Question

Let G be a group of order n and a in G such that a^n =...

Let G be a group of order n and a in G such that a^n = e. Prove or disprove: G = <a>

Homework Answers

Answer #1

k<=n and k|n for all a € G .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a...
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a positive integer. How many subgroups of order m does G have? Prove your assertion.
prove that if G is a cyclic group of order n, then for all a in...
prove that if G is a cyclic group of order n, then for all a in G, a^n=e.
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
(a) Prove or disprove: Let H and K be two normal subgroups of a group G....
(a) Prove or disprove: Let H and K be two normal subgroups of a group G. Then the subgroup H ∩ K is normal in G. (b) Prove or disprove: D4 is normal in S4.
Let G be a group of order 4. Prove that either G is generated by a...
Let G be a group of order 4. Prove that either G is generated by a single element or g^2 =1 for all g∈G.
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.
Let N be a normal subgroup of G. Prove or disprove the following assertion: N and...
Let N be a normal subgroup of G. Prove or disprove the following assertion: N and G/N have composition series ----> G has a composition series.
Let G be a finite Abelian group and Let n be a positive divisor of |G|....
Let G be a finite Abelian group and Let n be a positive divisor of |G|. Show that G has a subgroup of order n.
Let G be a group of order 4. Prove that either G is cyclic or it...
Let G be a group of order 4. Prove that either G is cyclic or it is isomorphic to the Klein 4-group V4 = {1,(12)(34),(13)(24),(14)(23)}.
Let G be a graph or order n with independence number α(G) = 2. (a) Prove...
Let G be a graph or order n with independence number α(G) = 2. (a) Prove that if G is disconnected, then G contains K⌈ n/2 ⌉ as a subgraph. (b) Prove that if G is connected, then G contains a path (u, v, w) such that uw /∈ E(G) and every vertex in G − {u, v, w} is adjacent to either u or w (or both).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT