Question

Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...

Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.

Homework Answers

Answer #1

Statement of Cauchy's theorem : Let G be a finite group and be a prime number . If divides the order of G then G has an element of order .

Here G is a group of order 425 , since 5 divides 245 and 5 is a prime so G has an elements of order 5 .

.

.

The proof of Cauchys theorem is not that difficult , if you want proof of the theorem please comment .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
LetG be a group (not necessarily an Abelian group) of order 425. Prove that G must...
LetG be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5.
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose...
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose H is a normal subgroup of G. Prove that HP/H is a Sylow p-subgroup of G/H and that H ∩ P is a Sylow p-subgroup of H. Hint: Use the Second Isomorphism theorem.
Let G be a group of order p^3. Prove that either G is abelian or its...
Let G be a group of order p^3. Prove that either G is abelian or its center has exactly p elements.
Let G be an Abelian group and H a subgroup of G. Prove that G/H is...
Let G be an Abelian group and H a subgroup of G. Prove that G/H is Abelian.
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove...
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove that, for any two elements x, y ∈ G, we have x^ (-1) y ^(-1)xy ∈ H
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Prove that if G is a group with |G|≤5 then G is abelian.
Prove that if G is a group with |G|≤5 then G is abelian.
Suppose that G is abelian group of order 16, and in computing the orders of its...
Suppose that G is abelian group of order 16, and in computing the orders of its elements, you come across an element of order 8 and 2 elements of order 2. Explain why no further computations are needed to determine the isomorphism class of G. provide explanation please.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT