Question

Let G be a group of order 4. Prove that either G is cyclic or it...

Let G be a group of order 4. Prove that either G is cyclic or it is isomorphic to the Klein 4-group V4 = {1,(12)(34),(13)(24),(14)(23)}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group of order 4. Prove that either G is generated by a...
Let G be a group of order 4. Prove that either G is generated by a single element or g^2 =1 for all g∈G.
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a...
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a positive integer. How many subgroups of order m does G have? Prove your assertion.
prove that if G is a cyclic group of order n, then for all a in...
prove that if G is a cyclic group of order n, then for all a in G, a^n=e.
Let G be a group of order p^3. Prove that either G is abelian or its...
Let G be a group of order p^3. Prove that either G is abelian or its center has exactly p elements.
Let G = <a> be a cyclic group of order 12. Describe explicitly all elements of...
Let G = <a> be a cyclic group of order 12. Describe explicitly all elements of Aut(G), the group of automorphisms of G. Indicate how you know that these are elements of Aut(G) and that these are the only elements of Aut(G).
(abstract alg) Let G be a cyclic group with more than two elements: a) Prove that...
(abstract alg) Let G be a cyclic group with more than two elements: a) Prove that G has at least two different generators. b) If G is finite, prove that G has an even number of generators
Let G be a cyclic group, and H be any group. (i) Prove that any homomorphism...
Let G be a cyclic group, and H be any group. (i) Prove that any homomorphism ϕ : G → H is uniquely determined by where it maps a generator of G. In other words, if G = <x> and h ∈ H, then there is at most one homomorphism ϕ : G → H such that ϕ(x) = h. (ii) Why is there ‘at most one’? Give an example where no such homomorphism can exist.
Suppose that G is a cyclic group, with generator a. Prove that if H is a...
Suppose that G is a cyclic group, with generator a. Prove that if H is a subgroup of G then H is cyclic.
Let G be a group and D = {(x, x) | x ∈ G}. (a) Prove...
Let G be a group and D = {(x, x) | x ∈ G}. (a) Prove D is a subgroup of G. (b) Prove D ∼= G. (D is isomorphic to G)
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?