Question

Let G be a finite group and let H be a subgroup of order n. Suppose...

Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G.

Hint: Consider the subgroup aHa-1 of G.

Please explain in detail!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that if G is a group, H a subgroup of G with |H| = n,...
Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G. Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Let G be a finite group and H be a subgroup of G. Prove that if...
Let G be a finite group and H be a subgroup of G. Prove that if H is only subgroup of G of size |H|, then H is normal in G.
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose...
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose H is a normal subgroup of G. Prove that HP/H is a Sylow p-subgroup of G/H and that H ∩ P is a Sylow p-subgroup of H. Hint: Use the Second Isomorphism theorem.
Let G be a non-trivial finite group, and let H < G be a proper subgroup....
Let G be a non-trivial finite group, and let H < G be a proper subgroup. Let X be the set of conjugates of H, that is, X = {aHa^(−1) : a ∈ G}. Let G act on X by conjugation, i.e., g · (aHa^(−1) ) = (ga)H(ga)^(−1) . Prove that this action of G on X is transitive. Use the previous result to prove that G is not covered by the conjugates of H, i.e., G does not equal...
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If B is an element of G as well show that aH and bH contain the same number of elements in G.
Let H be a subgroup of G, and N be the normalizer of H in G...
Let H be a subgroup of G, and N be the normalizer of H in G and C be the centralizer of H in G. Prove that C is normal in N and the group N/C is isomorphic to a subgroup of Aut(H).
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Let G be a group and suppose H = {g5 : g ∈ G} is a...
Let G be a group and suppose H = {g5 : g ∈ G} is a subgroup of G. (a) Prove that H is normal subgroup of G. (b) Prove that every element in G/H has order at most 5.