Question

Find the type, transform to normal form, and solve the following PDE: uxx - 4uxy +...

Find the type, transform to normal form, and solve the following PDE:

uxx - 4uxy + 5uyy = 0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx...
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx + uyy = 0, −∞ < x < ∞ 0 < y < a, u(x, 0) = f(x), u(x, a) = 0, −∞ < x < ∞ u(x, y) → 0 uniformlyiny as|x| → ∞.
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial...
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial differential equation utt = c² uxx, -∞ < x < ∞, t > 0 u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0 ut(x,0) = 0
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) =...
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) = u(3π, t) = 0 u(x, 0) = sin(x/3) ut (x, 0) = 4 sin(x/3) − 6 sin(x) 9. Find the solution of the following PDE: utt − uxx = 0 u(0, t) = u(1, t) = 0 u(x, 0) = 0 ut(x, 0) = x(1 − x) 10. Find the solution of the following PDE: (1/2t+1)ut − uxx = 0 u(0,t) = u(π,t) =...
Find the general solution of uxx − 3uxy + 2uyy = 0 using the the method...
Find the general solution of uxx − 3uxy + 2uyy = 0 using the the method of characteristics: let v = y + 2x and w = y + x; define U(v, w) to be U(v, w) = U(y + 2x, y + x) = u(x, y); derive and solve a PDE for U(v, w); convert back to u(x, y).
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
(PDE Use the method of separation of variables and Fourier series to solve where m is...
(PDE Use the method of separation of variables and Fourier series to solve where m is a real constant And boundary value prob. Of Klein Gordon eqtn. Given : Utt - C^2 Uxx + m^2 U = 0 ,for 0 less than x less pi , t greater than 0 U (0,t) = u (pi,t) =0 for t greater than 0 U (x,0) = f (x) , Ut (x,0)= g (x) for 0 less than x less than pj
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
Solve the PDE 2yux + (3x2 - 1)uy = 0
Solve the PDE 2yux + (3x2 - 1)uy = 0
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar...
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x) using the Fourier sine transform.
Transform the model into standard form and solve by using the computer. Given the following linear...
Transform the model into standard form and solve by using the computer. Given the following linear programming model: Maximize Z = 140x + 205y + 190z Subject to: 10x + 15y + 8z <= 610 x/y <=3 x>=.4(x+y+z) y>=z
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT