Question

Transform the model into standard form and solve by using the computer. Given the following linear...

Transform the model into standard form and solve by using the computer.

Given the following linear programming model:

Maximize Z = 140x + 205y + 190z

Subject to:

10x + 15y + 8z <= 610

x/y <=3

x>=.4(x+y+z)

y>=z

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following linear optimization model, transform this model into the required form and solve using...
Given the following linear optimization model, transform this model into the required form and solve using Solver. Objective function: 8.2? + 7.0? + 6.5? + 9.0? = ??????? ???? Constraints: 6? + 2? + 5? + 7? ≥ 820 ?/? + ? + ? + ? ≥ 0.3 ? + ?/? + ? ≥ 0.2 ? ≥ ? + D Please Use Excel
Solve the following linear programming model graphically and explain the solution result. Maximize Z = 60x1...
Solve the following linear programming model graphically and explain the solution result. Maximize Z = 60x1 + 90x2 Subject to 60x1 + 30x2 <= 1500 100x1 + 100x2 >= 6000 x2 >= 30 x1, x2 >= 0
Given use Laplace transform to solve the following systems of differential equations. 2x' - y' -...
Given use Laplace transform to solve the following systems of differential equations. 2x' - y' - z' = 0 x' + y' = 4t + 2 y' + z = t2 + 2 SUBJECT = ORDINARY DIFFERENTIAL EQUATIONS TOPIC = LAPLACE TRANSFORM
Solve the linear programming problem by sketching the region and labeling the vertices, deciding whether a...
Solve the linear programming problem by sketching the region and labeling the vertices, deciding whether a solution exists, and then finding it if it does exist. (If an answer does not exist, enter DNE.) Maximize P = 10x + 6y Subject to 2x + y ≤ 90 x + y ≤ 50 x + 2y ≤ 90 x ≥ 0, y ≥ 0
The following constraints of a linear programming model have been graphed on the graph paper provided...
The following constraints of a linear programming model have been graphed on the graph paper provided (same constraints found in problem #3) to form a feasible region: 2X    + 6Y     >=    120 10X + 2Y     > =   200 X      +     Y     <=    120 X                     <=    100                  Y    <=      80 X,Y                  >=        0 Using the graphical method, determine the optional solution and the objective function value for the following objective functions. Graph the objective function as a dashed line on...
Solve the following linear programming model by using the graphical method: graph the constraints and identify...
Solve the following linear programming model by using the graphical method: graph the constraints and identify the feasible region. Using the corner points method, determine the optimal solution (s) (show your work). Maximize Z = 6.5x1 + 10x2 Subject to x1 + x2 ≤ 15 2x1 + 4x2 ≤ 40 x1 ≥ 8 x1, x2 ≥ 0 b. If the constraint x1 ≥ 8 is changed to x1 ≤ 8, what effect does this have on the optimal solution? Are...
The following constraints of a linear programming model have been graphed on the graph paper provided...
The following constraints of a linear programming model have been graphed on the graph paper provided to form a feasible region: 2X    + 6Y     >=    120 10X + 2Y     > =   200 X      +     Y     <=    120 X                     <=    100                  Y    <=      80 X,Y                  >=        0 Using the graphical method, determine the optional solution and the objective function value for the following objective functions. Graph the objective function as a dashed line on the feasible region described by the...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 14 3x + 2y + 4z ≤ 24 2x + 5y − 2z ≤ 10 x ≥ 0, y ≥ 0, z ≥ 0   The maximum is P =   at (x, y, z) = ( ) .
a. Solve the following linear programming model by using the graphical method: graph the constraints and...
a. Solve the following linear programming model by using the graphical method: graph the constraints and identify the feasible region then determine the optimal solution (s) (show your work). Minimize Z = 3x1 + 7x2 Subject to 9x1 + 3x2 ≥ 36 4x1 + 5x2 ≥ 40 x1 – x2 ≤ 0 2x1 ≤ 13 x1, x2 ≥ 0 b. Are any constraints binding? If so, which one (s)?
Solve the linear programming problem by the simplex method. (There may be more than one correct...
Solve the linear programming problem by the simplex method. (There may be more than one correct answer.) Maximize P = 5x + 5y + 6z subject to x + y + 5z ≤ 25 6x + 6y + 5z ≤ 220 x ≥ 0, y ≥ 0, z ≥ 0