Question

8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) =...

8. Find the solution of the following PDE:

utt − 9uxx = 0
u(0, t) = u(3π, t) = 0
u(x, 0) = sin(x/3)
ut (x, 0) = 4 sin(x/3) − 6 sin(x)

9. Find the solution of the following PDE:

utt − uxx = 0

u(0, t) = u(1, t) = 0

u(x, 0) = 0
ut(x, 0) = x(1 − x)

10. Find the solution of the following PDE:

(1/2t+1)ut − uxx = 0

u(0,t) = u(π,t) = 0
u(x, 0) = sin(x) + 3 sin(2x)

Please answer all three, will give good rating as soon as possible

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find a solution u(x, t) of the following problem utt = 2uxx, 0 ≤ x ≤...
Find a solution u(x, t) of the following problem utt = 2uxx, 0 ≤ x ≤ 2 u(0, t) = u(2, t) = 0 u(x, 0) = 0, ut(x, 0) = sin πx − 2 sin 3πx.
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x < π u(x, 0) = sin(x), ut(x, 0) = 0 u(0, t) = 1, u(π, t) = 0. Your solution should be in the form of Fourier series. Write down the formulas that determine the coefficients in the Fourier series but do not evaluate the integrals
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
Let U(x,t) be the solution of the IBVP: Utt=4Uxx, x>0, t>0 ICs: U(x,0) = x, Ut(x,0)...
Let U(x,t) be the solution of the IBVP: Utt=4Uxx, x>0, t>0 ICs: U(x,0) = x, Ut(x,0) = 0, x>0 BCs: Ux(0,t) = 0 Find U(4,1) and U(1,2)
Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x)...
Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x) , Ut(x,0) = 1+x (PDE)
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial...
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial differential equation utt = c² uxx, -∞ < x < ∞, t > 0 u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0 ut(x,0) = 0
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi