Question

Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar...

Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x) using the Fourier sine transform.

Homework Answers

Answer #1

ANSWER:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Fourier sine transform to derive the solution formula for the heat equation ut =...
Use the Fourier sine transform to derive the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x).
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut...
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x) a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution. b) What happens to the solution as t →...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0 u(0, t) = u(L, t) = 0, t > 0 u(x, 0) = f(x), 0 < x < L a) f(x) = 6 sin 9πx L b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx...
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx + uyy = 0, −∞ < x < ∞ 0 < y < a, u(x, 0) = f(x), u(x, a) = 0, −∞ < x < ∞ u(x, y) → 0 uniformlyiny as|x| → ∞.
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0 < x < 1 with boundary conditions ux (0, t ) = 0 and ux (1, t ) = 0, yields the general solution, ∞ u(x,t) = A0 + ?Ane−kλnt cos?nπx? (with λn = n2π2) n=1DeterminethecoefficientsAn(n=0,1,2,...)whenu(x,0)=f(x)= 0, 1/2≤x<1 .
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi...
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi U(0,t)=0 t>=0 U(pi,t)=0 t>=0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT