Question

Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions :

1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x

2) U(x,0) = x^3 , Ut(x,0) =sinx

(PDE)

Answer #1

Solve the non homogenous wave equation , Utt - c^2Uxx =1 ,
u(x,0) = sin (x) , Ut(x,0) = 1+x
(PDE)

Solve the wave equation:
utt = c2uxx, 0<x<pi, t>0
u(0,t)=0, u(pi,t)=0, t>0
u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi

(PDE)
WRITE down the solutions to the ff initial boundary problem for
wave equation in the form of Fourier series :
1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) =
0
2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) =
-x

8. Find the solution of the following PDE:
utt − 9uxx = 0
u(0, t) = u(3π, t) = 0
u(x, 0) = sin(x/3)
ut (x, 0) = 4 sin(x/3) − 6 sin(x)
9. Find the solution of the following PDE:
utt − uxx = 0
u(0, t) = u(1, t) = 0
u(x, 0) = 0
ut(x, 0) = x(1 − x)
10. Find the solution of the following PDE:
(1/2t+1)ut − uxx = 0
u(0,t) = u(π,t) =...

Solve the following wave equation using Fourier Series
a2uxx = utt, 0 < x < L, t
> 0, u(0,t) = 0 = u(L,t), u(x,0) = x(L - x)2,
ut(x,0) = 0

Solve the following wave equation using Fourier Series
a2uxx = utt, 0 < x < pi,
t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sin2x - sin3x,
ut(x,0) = 0

Solve the following wave equation using Fourier Series
a2uxx = utt, 0 < x < pi,
t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinxcosx,
ut(x,0) = x(pi - x)

Solve ut=uxx, 0 < x < 3, given the
following initial and boundary conditions:
- u(0,t) = u(3,t) = 1
- u(x,0) = 0
Please write clearly and explain your reasoning.

PDE
Solve using the method of characteristics
Plot the intial conditions and then solve the parial
differential equation
utt = c² uxx, -∞ < x < ∞, t > 0
u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0
ut(x,0) = 0

Solve the heat equation and find the steady state solution :
uxx=ut 0<x<1, t>0,
u(0,t)=T1, u(1,t)=T2, where T1 and T2 are
distinct constants, and u(x,0)=0

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 51 seconds ago

asked 13 minutes ago

asked 16 minutes ago

asked 21 minutes ago

asked 33 minutes ago

asked 42 minutes ago

asked 48 minutes ago

asked 51 minutes ago

asked 54 minutes ago

asked 56 minutes ago

asked 59 minutes ago

asked 59 minutes ago