Question

Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...

Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions :

1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x

2) U(x,0) = x^3 , Ut(x,0) =sinx

(PDE)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x)...
Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x) , Ut(x,0) = 1+x (PDE)
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) =...
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) = u(3π, t) = 0 u(x, 0) = sin(x/3) ut (x, 0) = 4 sin(x/3) − 6 sin(x) 9. Find the solution of the following PDE: utt − uxx = 0 u(0, t) = u(1, t) = 0 u(x, 0) = 0 ut(x, 0) = x(1 − x) 10. Find the solution of the following PDE: (1/2t+1)ut − uxx = 0 u(0,t) = u(π,t) =...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < L,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < L, t > 0, u(0,t) = 0 = u(L,t), u(x,0) = x(L - x)2, ut(x,0) = 0
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sin2x - sin3x, ut(x,0) = 0
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinxcosx, ut(x,0) = x(pi - x)
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial...
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial differential equation utt = c² uxx, -∞ < x < ∞, t > 0 u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0 ut(x,0) = 0
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0