Prove that the correctness of the following properties of the given recursive sequences.
a) Given the sequence P(1) = 1, P(n) = 2∗P(n−1) for all n ≥ 1, prove that P(n) = 2n−1 for all n ≥ 1
b) Given the sequence P(1) = 1, P(2) = 1, P(3) = 1, P(4) = 1, P(n) = P(n − 2) + P(n − 4) for all n ≥ 5, prove that P(n) = P(n − 1) for all even positive integers n.
Get Answers For Free
Most questions answered within 1 hours.