Question

Consider the following recursive equation s(2n) = 2s(n) + 3; where n = 1, 2, 4,...

Consider the following recursive equation s(2n) = 2s(n) + 3; where n = 1, 2, 4, 8, 16, ...

s(1) = 1

a. Calculate recursively s(8)

b. Find an explicit formula for s(n)

c. Use the formula of part b to calculate s(1), s(2), s(4), and s(8)

d Use the formula of part b to prove the recurrence equation s(2n) = 2s(n) + 3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the following recurrence relation, subject to the basis. S(1) = 2 S(n) =2S(n/2) + 2n
Solve the following recurrence relation, subject to the basis. S(1) = 2 S(n) =2S(n/2) + 2n
Solve the following recurrence relation, subject to the basis. S(1) = 2 S(n) =2S(n/2) + 2n
Solve the following recurrence relation, subject to the basis. S(1) = 2 S(n) =2S(n/2) + 2n
. A sequence { bn } is defined recursively bn= -bn-1/2, where b1 = 3. (a)...
. A sequence { bn } is defined recursively bn= -bn-1/2, where b1 = 3. (a) Find an explicit formula for the general term of the bn = f(n). (b) Is the sequence convergent or divergent? (c) Consider the series ∑ approaches infinity and n=1 bn.  Is this series convergent or divergent? (d) If it is convergent, find its sum
2. Given the recurrence relation an = an−1 + n for n ≥ 2 where a1...
2. Given the recurrence relation an = an−1 + n for n ≥ 2 where a1 = 1, find a explicit formula for an and determine whether the sequence converges or diverges
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n...
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n 1)What does this algorithm compute? 2) Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed. 3) How does this algorithm compare with the non-recusive algorithm for computing thius function in terms of time efficeincy and space effeciency?
Consider the following recursive algorithm. Algorithm Mystery(n) if n=1 then Execute Task A; // Requires Θ(1)...
Consider the following recursive algorithm. Algorithm Mystery(n) if n=1 then Execute Task A; // Requires Θ(1) operations else Mystery(n/3); Mystery(n/3); Mystery(n/3); Execute Task B;  //Requires 2n operations end if Let C(n) be the complexity of Mystery(n). Use the method of backward substitution to determine C(n) in three steps. a) Write the recurrence relation for C(n) including the initial condition. b) Write at least two substitution steps for C(n) and identify the pattern. c) Determine the complexity class of the algorithm in...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2....
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2. Letting s1 = 0, find a recursive formula for the sequence 0, 1, 3, 7, 15,... 3. Evaluate. (a) 55mod 7. (b) −101 div 3. 4. Prove that the sum of two consecutive odd integers is divisible by 4 5. Show that if a|b then −a|b. 6. Prove or disprove: For any integers a,b, c, if a ∤ b and b ∤ c, then...
Consider the following. n = 8 measurements: 1, 2, 4, 1, 2, 4, 3, 2 Calculate...
Consider the following. n = 8 measurements: 1, 2, 4, 1, 2, 4, 3, 2 Calculate the sample variance, s2, using the definition formula. (Round your answer to four decimal places.) s2 = Calculate the sample variance, s2 using the computing formula. (Round your answer to four decimal places.) s2 = Calculate the sample standard deviation, s. (Round your answer to three decimal places.) s =
java data structure question - Consider the following recurrence function" f(1)=1; f(2)=2; f(3)=3; f(4)=2; f(5)=2 f(n)...
java data structure question - Consider the following recurrence function" f(1)=1; f(2)=2; f(3)=3; f(4)=2; f(5)=2 f(n) = 2 * f(n -1) + f(n – 5) for n >= 6 Write a program to demonstrate this recurrence relation (recursive method) and demonstrate it for the values n = 6, 7, 10, and 12; Create a second method that solves the same problem using an iterative solution. Modify your test program to show that both the recursive method and the iterative methods...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT