Question

A square matrix is nilpotent if there is a positive integer k such that Ak =...

A square matrix is nilpotent if there is a positive integer k such that Ak = 0, the all zeros matrix. Prove that if A is nilpotent, then A is NOT invertible

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For these two problems, use the definition of eigenvalues. (a) An n × n matrix is...
For these two problems, use the definition of eigenvalues. (a) An n × n matrix is said to be nilpotent if Ak = O for some positive integer k. Show that all eigenvalues of a nilpotent matrix are 0. (b) An n × n matrix is said to be idempotent if A2 = A. Show that all eigenvalues of a idempotent matrix are 0, or 1.
Let K be a positive definite matrix. Prove that K is invertible, and that K^(-1) is...
Let K be a positive definite matrix. Prove that K is invertible, and that K^(-1) is also positive definite.
let's fix a positive integer n. for a nonnegative integer k, let ak be the number...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number of ways to distribute k indistinguishable balls into n distinguishable bins so that an even number of balls are placed in each bin (allowing empty bins). The generating function for sequence ak is given as 1/F(x). Find F(x).
A stochastic matrix is a square matrix A with entries 0≤a_ij≤1 such that the sum of...
A stochastic matrix is a square matrix A with entries 0≤a_ij≤1 such that the sum of each column of A is 1. Prove that if A is stochastic, then A^k is stochastic for every positive integer k.
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the...
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the nulmatrix. 1. show an example of a non-trivial, nilpotent 2×2-matrix 2.let A be an invertible n×n-matrix. show that A is not nilpotent.
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer...
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer k. Show that A^2 = 0.
Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that...
Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that each eigenvector of A is an eigenvector of Ak and conclude that Ak is diagonalisable
Suppose for each positive integer n, an is an integer such that a1 = 1 and...
Suppose for each positive integer n, an is an integer such that a1 = 1 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a simple expression involving n that evaluates an for each positive integer n. Prove that your guess works for each n ≥ 1. Suppose for each positive integer n, an is an integer such that a1 = 7 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a...
Given A, 2 by 2 matrix as (−4 2 1 −3) find a formula for Ak...
Given A, 2 by 2 matrix as (−4 2 1 −3) find a formula for Ak for any positive integer k. the answer should be in the form of a single 2 ×2 matrix.
Let A be a square matrix, A != I, and suppose there exists a positive integer...
Let A be a square matrix, A != I, and suppose there exists a positive integer m such that Am = I. Calculate det(I + A + A2+ ··· + Am-1).