Question

Given A, 2 by 2 matrix as (−4 2 1 −3) find a formula for Ak...

Given A, 2 by 2 matrix as

(−4 2

1 −3)

find a formula for Ak for any positive integer k. the answer should be in the form of a single 2 ×2 matrix.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A square matrix is nilpotent if there is a positive integer k such that Ak =...
A square matrix is nilpotent if there is a positive integer k such that Ak = 0, the all zeros matrix. Prove that if A is nilpotent, then A is NOT invertible
find all eigenvalues and eigenvectors of the given matrix A= [3 2 2 1 4 1...
find all eigenvalues and eigenvectors of the given matrix A= [3 2 2 1 4 1 -2 -4 -1]
Given a matrix F = [3 6 7] [0 2 1] [2 3 4]. Use Cramer’s...
Given a matrix F = [3 6 7] [0 2 1] [2 3 4]. Use Cramer’s rule to find the inverse matrix of F. Given a matrix G = [1 2 4] [0 -3 1] [0 0 3]. Use Cramer’s rule to find the inverse matrix of G. Given a matrix H = [3 0 0] [-1 1 0] [-2 3 2]. Use Cramer’s rule to find the inverse matrix of H.
. Given the matrix A = 1 1 3 -2 2 5 4 3 −1 2...
. Given the matrix A = 1 1 3 -2 2 5 4 3 −1 2 1 3 (a) Find a basis for the row space of A (b) Find a basis for the column space of A (c) Find the nullity of A
find the solution to the recurrence relation ak=ak-1+2ak-2+2 with the initial condition a0=4 and a1 =...
find the solution to the recurrence relation ak=ak-1+2ak-2+2 with the initial condition a0=4 and a1 = 12
let's fix a positive integer n. for a nonnegative integer k, let ak be the number...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number of ways to distribute k indistinguishable balls into n distinguishable bins so that an even number of balls are placed in each bin (allowing empty bins). The generating function for sequence ak is given as 1/F(x). Find F(x).
3. a) For any group G and any a∈G, prove that given any k∈Z+, C(a) ⊆...
3. a) For any group G and any a∈G, prove that given any k∈Z+, C(a) ⊆ C(ak). (HINT: You are being asked to show that C(a) is a subset of C(ak). You can prove this by proving that if x ∈ C(a), then x must also be an element of C(ak) for any positive integer k.) b) Is it necessarily true that C(a) = C(ak) for any k ∈ Z+? Either prove or disprove this claim.
Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that...
Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that each eigenvector of A is an eigenvector of Ak and conclude that Ak is diagonalisable
#2. For the matrix A =   1 2 1 2 3 7 4 7...
#2. For the matrix A =   1 2 1 2 3 7 4 7 9   find the following. (a) The null space N (A) and a basis for N (A). (b) The range space R(AT ) and a basis for R(AT ) . #3. Consider the vectors −→x =   k − 6 2k 1   and −→y =   2k 3 4  . Find the number k such that the vectors...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1    a) Find all eigenvalues of A. b) Find a basis for each eigenspace of A. c) Determine whether A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that D = P^−1AP. Please show all work and steps clearly please so I can follow your logic and learn to solve similar ones myself. I...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT