Question

Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer...

Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer k. Show that A^2 = 0.

Homework Answers

Answer #1

Suppose that λ is an eigenvalue of A with corresponding eigenvector v. Now, since Av = λv, Av = λkv. Since Ak = 0,therefore, λkv = 0. Since v is a non-zero vector (by definition of eigenvector), we conclude that λk = 0.

Thus λ = 0 ( as k being a positive integer, is non-zero).Thus, the only eigenvalue of A is 0. HYence the chareacteristic equation of A is (ʎ-0)(ʎ-0)= 0 or, ʎ2 = 0.Now, as oper the Cayley Hamilton theorem, A satisfies its own chareacteristic equation, so that A2 = 0.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k...
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k ≤ p − 1. Prove that p divides p!/ (k! (p-k)!).
Let n be a positive integer and let U be a finite subset of Mn×n(C) which...
Let n be a positive integer and let U be a finite subset of Mn×n(C) which is closed under multiplication of matrices. Show that there exists a matrix A in U satisfying tr(A) ∈ {1,...,n}
Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that...
Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that each eigenvector of A is an eigenvector of Ak and conclude that Ak is diagonalisable
Let A be an n×n matrix. If there exists k > n such that A^k =0,then...
Let A be an n×n matrix. If there exists k > n such that A^k =0,then (a) prove that In − A is nonsingular, where In is the n × n identity matrix; (b) show that there exists r ≤ n such that A^r= 0.
Let K be a positive definite matrix. Prove that K is invertible, and that K^(-1) is...
Let K be a positive definite matrix. Prove that K is invertible, and that K^(-1) is also positive definite.
Let A be a square matrix, A != I, and suppose there exists a positive integer...
Let A be a square matrix, A != I, and suppose there exists a positive integer m such that Am = I. Calculate det(I + A + A2+ ··· + Am-1).
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P(...
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P( x> k-1)- P( X>k) for any positive integer k. assume that for all k>=1 we have P(x>k)=q^k. use (a) to show that x is a geometric random variable.
Let λ be a positive irrational real number. If n is a positive integer, choose by...
Let λ be a positive irrational real number. If n is a positive integer, choose by the Archimedean Property an integer k such that kλ ≤ n < (k + 1)λ. Let φ(n) = n − kλ. Prove that the set of all φ(n), n > 0, is dense in the interval [0, λ]. (Hint: Examine the proof of the density of the rationals in the reals.)
Let m be a composite positive integer and suppose that m = 4k + 3 for...
Let m be a composite positive integer and suppose that m = 4k + 3 for some integer k. If m = ab for some integers a and b, then a = 4l + 3 for some integer l or b = 4l + 3 for some integer l. 1. Write the set up for a proof by contradiction. 2. Write out a careful proof of the assertion by the method of contradiction.
let's fix a positive integer n. for a nonnegative integer k, let ak be the number...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number of ways to distribute k indistinguishable balls into n distinguishable bins so that an even number of balls are placed in each bin (allowing empty bins). The generating function for sequence ak is given as 1/F(x). Find F(x).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT