Question

Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that...

Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that each eigenvector of A is an eigenvector of Ak and conclude that Ak is diagonalisable

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer...
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer k. Show that A^2 = 0.
Let A be an n × n matrix and let x be an eigenvector of A...
Let A be an n × n matrix and let x be an eigenvector of A corresponding to the eigenvalue λ . Show that for any positive integer m, x is an eigenvector of Am corresponding to the eigenvalue λ m .
let's fix a positive integer n. for a nonnegative integer k, let ak be the number...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number of ways to distribute k indistinguishable balls into n distinguishable bins so that an even number of balls are placed in each bin (allowing empty bins). The generating function for sequence ak is given as 1/F(x). Find F(x).
Suppose for each positive integer n, an is an integer such that a1 = 1 and...
Suppose for each positive integer n, an is an integer such that a1 = 1 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a simple expression involving n that evaluates an for each positive integer n. Prove that your guess works for each n ≥ 1. Suppose for each positive integer n, an is an integer such that a1 = 7 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a...
Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is...
Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is the associated eigenvector?
Let A be a square matrix, A != I, and suppose there exists a positive integer...
Let A be a square matrix, A != I, and suppose there exists a positive integer m such that Am = I. Calculate det(I + A + A2+ ··· + Am-1).
Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2....
Let A be an symmetric matrix. Assume that A has two different eigenvalues ?1 ?= ?2. Let v1 be a ?1-eigenvector, and v2 be and ?2-eigenvector. Show that v1 ? v2. (Hint: v1T Av2 = v2T Av1.)
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ....
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ. (Hint: start off with an eigenvector and dot-product it with itself. Then cleverly insert A and At into the dot-product.) b) Suppose P is an orthogonal projection. Show that the only possible eigenvalues are 0 and 1. (Hint: start off with an eigenvector and write down the definition. Then apply P to both sides.) An n×n matrix B is symmetric if B = Bt....
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...