Question

4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...

4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by

f(z) = z^3.

  1. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex-

    ample.

  2. (ii) Prove that f is not injective.

  3. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x].

(iv) Determine whether or not the ring C[x]/I is a field.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
Let I be an ideal of the ring R. Prove that the reduction map R[x] →...
Let I be an ideal of the ring R. Prove that the reduction map R[x] → (R/I)[x] is a ring homomorphism.
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let M = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:M→R f(x)↦f(a) This is called the evaluation homomorphism. 1. Describe the kernel of the evaluation homomorphism. 2. Is the kernel of the evaluation homomorphism a prime ideal or a maximal ideal or both or neither?
) In the Extra Problem on PS 2 we defined a map φ:M2,2(Z) → M2,2(Z2) by...
) In the Extra Problem on PS 2 we defined a map φ:M2,2(Z) → M2,2(Z2) by the formula φ a b c d = a mod (2) b mod (2) c mod (2) d mod (2) On PS 2 you showed that φ is a ring homomorphism and that ker(φ) = 2a 2b 2c 2d a, b, c, d ∈ Z We know the kernel of any ring homomorphism is an ideal. Let I = ker(φ). (a) (6 points) The...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
Definition:In the complex numbers, let J denote the set, {x+y√3i :x and y are in Z}....
Definition:In the complex numbers, let J denote the set, {x+y√3i :x and y are in Z}. J is an integral domain containing Z. If a is in J, then N(a) is a non-negative member of Z. If a and b are in J and a|b in J, then N(a)|N(b) in Z. The units of J are 1, -1 Question:If a and b are in J and ab = 2, then prove one of a and b is a unit. Thus,...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...
Let f : [0,∞) → [0,∞) be defined by, f(x) := √ x for all x...
Let f : [0,∞) → [0,∞) be defined by, f(x) := √ x for all x ∈ [0,∞), g : [0,∞) → R be defined by, g(x) := √ x for all x ∈ [0,∞) and h : [0,∞) → [0,∞) be defined by h(x) := x 2 for each x ∈ [0,∞). For each of the following (i) state whether the function is defined - if it is then; (ii) state its domain; (iii) state its codomain; (iv) state...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT