Question

Prove that if a topological space X has the fixed point property, then X is connected

Prove that if a topological space X has the fixed point property, then X is connected

Homework Answers

Answer #1

please give a rating if it was helpful...thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A topological space is totally disconnected if the connected components are all singletons. Prove that any...
A topological space is totally disconnected if the connected components are all singletons. Prove that any countable metric space is totally disconnected.
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Give an example of a topological space X that is Hausdorff, but not regular. Prove that...
Give an example of a topological space X that is Hausdorff, but not regular. Prove that the space X you chose is Hausdorff. Prove that the space X you chose is not regular.
Prove that if X is a connected Hausdorff space and X has more than one point,...
Prove that if X is a connected Hausdorff space and X has more than one point, then X is infinite. Please show all work and write clear I am stupid
Prove or provide a counterexample Let (X,T) be a topological space, and let A⊆X. Then A...
Prove or provide a counterexample Let (X,T) be a topological space, and let A⊆X. Then A is dense iff Ext(A) =∅.
Prove that the product of two connected topological spaces is connected.
Prove that the product of two connected topological spaces is connected.
1. a) State the definition of a topological space. b) Prove that every metric space is...
1. a) State the definition of a topological space. b) Prove that every metric space is a topological space. c) Is the converse of part (b) true? That is, is every topological space a metric space? Justify your answer.
Show by counterexample that a connected component of a topological space is not necessarily open.
Show by counterexample that a connected component of a topological space is not necessarily open.
Prove that if T is a discrete topological space (i.e., every subset of T is open)...
Prove that if T is a discrete topological space (i.e., every subset of T is open) and ∼ is any equivalence relation on T , then the quotient space T / ∼ is also discrete topological space. [Hint: It is a very short and straightforward proof.]
Let X be a topological space with topology T = P(X). Prove that X is finite...
Let X be a topological space with topology T = P(X). Prove that X is finite if and only if X is compact. (Note: You may assume you proved that if ∣X∣ = n, then ∣P(X)∣ = 2 n in homework 2, problem 2 and simply reference this. Hint: Ô⇒ follows from the fact that if X is finite, T is also finite (why?). Therefore every open cover is already finite. For the reverse direction, consider the contrapositive. Suppose X...