Question

Prove that the product of two connected topological spaces is connected.

Prove that the product of two connected topological spaces is connected.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If X and Y are discrete topological spaces, how do I prove X x Y is...
If X and Y are discrete topological spaces, how do I prove X x Y is also discrete? How would I prove the converse is true, could I ? Very interested. Please explain. Like to please break down into steps that would make sense. Not sure if I have to use facts of product topology and discrete topology and how to use them.
Prove that if a topological space X has the fixed point property, then X is connected
Prove that if a topological space X has the fixed point property, then X is connected
A topological space is totally disconnected if the connected components are all singletons. Prove that any...
A topological space is totally disconnected if the connected components are all singletons. Prove that any countable metric space is totally disconnected.
If X, Y are topological spaces and f : X → Y we call the graph...
If X, Y are topological spaces and f : X → Y we call the graph of f the set Γf = {(x, f(x)); x ∈ X} which is a subset of X × Y. If X and Y are metric spaces and f is a continuous function prove that the graph of f is a closed set.
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Prove that Lipschitz equivalent metrices are topological equivalent
Prove that Lipschitz equivalent metrices are topological equivalent
Show by counterexample that a connected component of a topological space is not necessarily open.
Show by counterexample that a connected component of a topological space is not necessarily open.
1. a) State the definition of a topological space. b) Prove that every metric space is...
1. a) State the definition of a topological space. b) Prove that every metric space is a topological space. c) Is the converse of part (b) true? That is, is every topological space a metric space? Justify your answer.
Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces...
Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces and that Y is Hausdorff. Show that the set A = {x ∈ X : f(x) = g(x)} is closed in X.
Give an example of a topological space X that is Hausdorff, but not regular. Prove that...
Give an example of a topological space X that is Hausdorff, but not regular. Prove that the space X you chose is Hausdorff. Prove that the space X you chose is not regular.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT