Question

A coin is tossed repeatedly; on each toss, a head is shown with probability p or...

A coin is tossed repeatedly; on each toss, a head is shown with probability p or a tail with probability 1 − p. All tosses are independent. Let E denote the event that the first run of r successive heads occurs earlier than the first run of s successive tails. Let A denote the outcome of the first toss. Show that P(E|A=head)=pr−1 +(1−pr−1)P(E|A=tail). Find a similar expression for P (E | A = tail) and then find P (E).

Homework Answers

Answer #1

i tried my best please like the answer if any problem please comment me all the best

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A biased coin is tossed repeatedly. The probability of getting head in any particular toss is...
A biased coin is tossed repeatedly. The probability of getting head in any particular toss is 0.3.Assuming that the tosses are independent, find the probability that 3rd head appears exactly at the 10th toss.
(a) A fair coin is tossed five times. Let E be the event that an odd...
(a) A fair coin is tossed five times. Let E be the event that an odd number of tails occurs, and let F be the event that the first toss is tails. Are E and F independent? (b) A fair coin is tossed twice. Let E be the event that the first toss is heads, let F be the event that the second toss is tails, and let G be the event that the tosses result in exactly one heads...
A coin with P[Heads]= p and P[Tails]= 1p is tossed repeatedly (the tosses are independent). Define...
A coin with P[Heads]= p and P[Tails]= 1p is tossed repeatedly (the tosses are independent). Define (X = number of the toss on which the first H appears, Y = number of the toss on which the second H appears. Clearly 1X<Y. (i) Are X and Y independent? Why or why not? (ii) What is the probability distribution of X? (iii) Find the probability distribution of Y . (iv) Let Z = Y X. Find the joint probability mass function
A coin with P[Heads]= p and P[Tails]= 1p is tossed repeatedly (the tosses are independent). Define...
A coin with P[Heads]= p and P[Tails]= 1p is tossed repeatedly (the tosses are independent). Define (X = number of the toss on which the first H appears, Y = number of the toss on which the second H appears. Clearly 1X<Y. (i) Are X and Y independent? Why or why not? (ii) What is the probability distribution of X? (iii) Find the probability distribution of Y . (iv) Let Z = Y X. Find the joint probability mass function
Problem Page Question A coin is tossed three times. An outcome is represented by a string...
Problem Page Question A coin is tossed three times. An outcome is represented by a string of the sort HTT (meaning a head on the first toss, followed by two tails). The 8 outcomes are listed in the table below. Note that each outcome has the same probability. For each of the three events in the table, check the outcome(s) that are contained in the event. Then, in the last column, enter the probability of the event. Outcomes Probability HHT...
A fair coin is tossed for n times independently. (i) Suppose that n = 3. Given...
A fair coin is tossed for n times independently. (i) Suppose that n = 3. Given the appearance of successive heads, what is the conditional probability that successive tails never appear? (ii) Let X denote the probability that successive heads never appear. Find an explicit formula for X. (iii) Let Y denote the conditional probability that successive heads appear, given no successive heads are observed in the first n − 1 tosses. What is the limit of Y as n...
Q1. Let p denote the probability that the coin will turn up as a Head when...
Q1. Let p denote the probability that the coin will turn up as a Head when tossed. Given n independent tosses of the same coin, what is the probability distribution associated with the number of Head outcomes observed? Q2. Suppose you have information that a coin in your possession is not a fair coin, and further that either Pr(Head|p) = p is certain to be equal to either p = 0.33 or p = 0.66. Assuming you believe this information,...
A fair coin is tossed three times. What is the probability that: a. We get at...
A fair coin is tossed three times. What is the probability that: a. We get at least 1 tail b. The second toss is a tail c. We get no tails. d. We get exactly one head. e. You get more tails than heads.
Suppose you toss an unfair coin 8 times independently. The probability of getting heads is 0.3....
Suppose you toss an unfair coin 8 times independently. The probability of getting heads is 0.3. Denote the outcome to be 1 if you get heads and 0 if you get tails. 1.Write down the sample space. 2. What is the probability of the event that you get a head or a tail at least once? 3. If you get 8 same toss you will get x dollars, otherwise you will lose one dollar. On average, how large should x...
A coin is tossed three times. An outcome is represented by a string of the sort...
A coin is tossed three times. An outcome is represented by a string of the sort HTT (meaning heads on the first toss, followed by two tails). The 8 outcomes are listed below. Assume that each outcome has the same probability. Complete the following. Write your answers as fractions. (a)Check the outcomes for each of the three events below. Then, enter the probability of each event. Outcomes Probability HHH HHT HTH HTT THH THT TTH TTT Event A: Exactly two...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT