Question

Prove that if X is a connected Hausdorff space and X has more than one point,...

Prove that if X is a connected Hausdorff space and X has more than one point, then
X is infinite.

Please show all work and write clear

I am stupid

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if a topological space X has the fixed point property, then X is connected
Prove that if a topological space X has the fixed point property, then X is connected
Suppose that E is a closed connected infinite subset of a metric space X. Prove that...
Suppose that E is a closed connected infinite subset of a metric space X. Prove that E is a perfect set.
A tree is a connected graph that contains no cycles. Prove that any tree with two...
A tree is a connected graph that contains no cycles. Prove that any tree with two or more vertices has chromatic number 2. Hi there! Please WRITE LEGIBLY and with clear steps. A lot of times I get confused by the solutions. Thank you!
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Let A⊆(X,d) a metric space. Suppose there are an infinite number of elements in e1,e2,e3,...∈ A...
Let A⊆(X,d) a metric space. Suppose there are an infinite number of elements in e1,e2,e3,...∈ A such that d(ei,ej)=4 if i≠j and d(ei,ej)=0 if i=j for i,j=1,2,3... Prove that A is not totally bounded. (Please do not write in script and show all your steps and definitions used)
(a) This exercise will give an example of a connected space which is not locally connected....
(a) This exercise will give an example of a connected space which is not locally connected. In the plane R2 , let X0 = [0, 1] × {0}, Y0 = {0} × [0, 1], and for each n ∈ N, let Yn = {1/n} × [0,1]. Let Y = X0 ∪ (S∞ n=0 Yn). as a subspace of R 2 with its usual topology. Prove that Y is connected but not locally connected. (Note that this example also shows that...
Let X be a topological space with topology T = P(X). Prove that X is finite...
Let X be a topological space with topology T = P(X). Prove that X is finite if and only if X is compact. (Note: You may assume you proved that if ∣X∣ = n, then ∣P(X)∣ = 2 n in homework 2, problem 2 and simply reference this. Hint: Ô⇒ follows from the fact that if X is finite, T is also finite (why?). Therefore every open cover is already finite. For the reverse direction, consider the contrapositive. Suppose X...
Using a step by step proof format Please prove: Given that x is a vector in...
Using a step by step proof format Please prove: Given that x is a vector in the span of V, where V is a linearly independent set of vectors, show that there is ONLY ONE linear combination of the vectors in V that yields x. (Hint: to show that something is unique, assume that there is more than one such thing and show that this leads to a contradiction)
Prove that there exist n consecutive positive integers each having a (nontrivial) square factor. How would...
Prove that there exist n consecutive positive integers each having a (nontrivial) square factor. How would you then modify your proof so that each of these integers instead has a cube factor (or more generally, a kth power factor where k ≥ 2)? This is a number theory question. Please show all steps and make clear notes about what is happening for a clear understanding. Please write clearly or do in latex. Thank you
Given a metric space Y, a point L in Y, and f:[0,infinity) -> Y, f has...
Given a metric space Y, a point L in Y, and f:[0,infinity) -> Y, f has a limit L element of Y at infinity, written, if for every epsilon greater than 0 there is a C>0 such that if x>C then d(f(x),L) < epsilon. Prove, if f:[0,infinity) -> Y is continuous and has a limit at infinity, then f is uniformly continuous.