Question

Math SAT: The math SAT test was originally designed to have a mean of 500 and...

Math SAT: The math SAT test was originally designed to have a mean of 500 and a standard deviation of 100. The mean math SAT score last year was 515 but the standard deviation was not reported. You read in an article for an SAT prep course that states in a sample of 75 students, the mean math score was 546, but they did not disclose the standard deviation. Assume the population standard deviation (σ) for all prep course students is 100 and test the claim that the mean score for prep course students is above the national average of 515. Use a 0.01 significance level.

(a) What type of test is this?

-This is a right-tailed test.

-This is a two-tailed test.    

-This is a left-tailed test.


(b) What is the test statistic? Round your answer to 2 decimal places.
z-x =

(c) What is the P-value of the test statistic? Use the answer found in the z-table or round to 4 decimal places.
P-value =

(d) What is the critical value of z? Use the answer found in the z-table or round to 3 decimal places.
zα =

(e) What is the conclusion regarding the null hypothesis?

-reject H0

-fail to reject H0    


(f) Choose the appropriate concluding statement.

-The data supports the claim that the mean score for all students taking the prep course is above the national average.

-There is not enough data to support the claim that the mean score for all students taking the prep course is above the national average.     

-We reject the claim that the mean score for all students taking the prep course is above the national average.

-We have proven that the mean score for all students taking the prep course is above the national average.

Homework Answers

Answer #1

Below are the null and alternative Hypothesis,
Null Hypothesis: μ = 515
Alternative Hypothesis: μ > 515

a)
Rejection Region
This is right tailed test, for α = 0.01

b)
Test statistic,
z = (xbar - mu)/(sigma/sqrt(n))
z = (546 - 515)/(100/sqrt(75))
z = 2.68

c)
P-value Approach
P-value = 0.0037
As P-value < 0.01, reject the null hypothesis.

d)
Critical value of z is 2.33.

e)
reject H0

f)
-The data supports the claim that the mean score for all students taking the prep course is above the national average.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Math SAT: The math SAT test was originally designed to have a mean of 500 and...
Math SAT: The math SAT test was originally designed to have a mean of 500 and a standard deviation of 100. The mean math SAT score last year was 515 but the standard deviation was not reported. You read in an article for an SAT prep course that states in a sample of 87 students, the mean math score was 534, but they did not disclose the standard deviation. Assume the population standard deviation (σ) for all prep course students...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 508, with a standard deviation of 35. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.01 significance level. (a) What type of test is this? This is a left-tailed test. This is a right-tailed test.    ...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 50 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a two-tailed test. This is a left-tailed test.    ...
A certain test preparation course is designed to improve students' SAT Math scores. The students who...
A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 507 while the students who did not take the prep course have a mean SAT Math score of 501. Assume that the population standard deviation of the SAT Math scores for students who took the prep course is 45.7 and for students who did not take the prep course is 32.1 The SAT...
A certain test preparation course is designed to improve students' SAT Math scores. The students who...
A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 507 while the students who did not take the prep course have a mean SAT Math score of 501. Assume that the population standard deviation of the SAT Math scores for students who took the prep course is 45.7 and for students who did not take the prep course is 32.1 The SAT...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 60 graduates from Stevens High, the mean SAT score in math was 510, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
A certain test preparation course is designed to improve students' SAT Math scores. The students who...
A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 504 with a standard deviation of 38.5, while the students who did not take the prep course have a mean SAT Math score of 492 with a standard deviation of 43.5. The SAT Math scores are taken for a sample of 78 students who took the prep course and a sample of 85...
Suppose the national mean SAT score in mathematics was 515. In a random sample of 40...
Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 507, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a left-tailed test. This is a right-tailed test.     This is...
. A certain test preparation course is designed to improve students' SAT Math scores. The students...
. A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 504 with a standard deviation of 38.5, while the students who did not take the prep course have a mean SAT Math score of 492 with a standard deviation of 43.5. The SAT Math scores are taken for a sample of 78 students who took the prep course and a sample of...