Question

Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...

Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.01 significance level.

(a) What type of test is this?

This is a left-tailed test.

This is a right-tailed test.    

This is a two-tailed test.


(b) What is the test statistic? Round your answer to 2 decimal places.
tx=

(c) Use software to get the P-value of the test statistic. Round to 4 decimal places.
P-value =

(d) What is the conclusion regarding the null hypothesis?

reject H0

fail to reject H0    


(e) Choose the appropriate concluding statement.

There is enough data to justify rejection of the claim that the mean math SAT score for Stevens High graduates is the same as the national average.

There is not enough data to justify rejection of the claim that the mean math SAT score for Stevens High graduates is the same as the national average.    

We have proven that the mean math SAT score for Stevens High graduates is the same as the national average.

Homework Answers

Answer #1

The statistic software output for this problem is :

(a)

This is a two-tailed test.

(b)

Test statistics = -2.11

(c)

P-value = 0.0415

(d)

fail to reject H0    

(e)

There is not enough data to justify rejection of the claim that the mean math SAT score for Stevens High graduates is the same as the national average.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 50 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a two-tailed test. This is a left-tailed test.    ...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 60 graduates from Stevens High, the mean SAT score in math was 510, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 508, with a standard deviation of 35. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
Suppose the national mean SAT score in mathematics was 515. In a random sample of 40...
Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 507, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a left-tailed test. This is a right-tailed test.     This is...
Suppose the national mean SAT score in mathematics was 510. In a random sample of 40...
Suppose the national mean SAT score in mathematics was 510. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 501, with a standard deviation of 40. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a two-tailed test. This is a right-tailed test. This is...
Math SAT: The math SAT test was originally designed to have a mean of 500 and...
Math SAT: The math SAT test was originally designed to have a mean of 500 and a standard deviation of 100. The mean math SAT score last year was 515 but the standard deviation was not reported. You read in an article for an SAT prep course that states in a sample of 75 students, the mean math score was 546, but they did not disclose the standard deviation. Assume the population standard deviation (σ) for all prep course students...
Math SAT: The math SAT test was originally designed to have a mean of 500 and...
Math SAT: The math SAT test was originally designed to have a mean of 500 and a standard deviation of 100. The mean math SAT score last year was 515 but the standard deviation was not reported. You read in an article for an SAT prep course that states in a sample of 87 students, the mean math score was 534, but they did not disclose the standard deviation. Assume the population standard deviation (σ) for all prep course students...
The mean SAT score in mathematics, μ, is 521. The standard deviation of these scores is...
The mean SAT score in mathematics, μ, is 521. The standard deviation of these scores is 36. A special preparation course claims that its graduates will score higher, on average, than the mean score 521. A random sample of 15 students completed the course, and their mean SAT score in mathematics was 530. Assume that the population is normally distributed. At the 0.1 level of significance, can we conclude that the preparation course does what it claims? Assume that the...
Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship...
Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship between studying music and studying math. We will look at some sample data that investigates this relationship. Below are the Math SAT scores from 8 students who studied music through high school and 11 students who did not. Test the claim that students who study music in high school have a higher average Math SAT score than those who do not. Test this claim...
Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship...
Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship between studying music and studying math. We will look at some sample data that investigates this relationship. Below are the Math SAT scores from 8 students who studied music through high school and 11 students who did not. Test the claim that students who study music in high school have a higher average Math SAT score than those who do not. Test this claim...