A researcher conducts an independent samples study examining the effect of distractions on memory performance. He randomly selected two groups of participants. The experimental group was given a memory test when there were distractions in the lab and the control group completed the same memory test without any distractions. The collected data are as follows:
Experimental Group (Distractions): Control Group (No Distractions):
n = 21 n = 21
M = 64 M = 67
SS = 260 SS = 220
Based on the collected data, is there a significant effect of distractions on memory performance? Use p < .05, 2-tails test to answer this research question.
Null hypothesis, ho: there no significant effect of distractions
on memory performance. u1=u2
Alternative hypothesis, h1: there a significant effect of
distractions on memory performance. u1 =/= u2
sample 1 | sample 2 | |
n= | 21.000 | 21.000 |
mean= | 64.0000000 | 67.0000000 |
s= | SQRT(260/20) = 3.6055513 | sqrt(220/20) = 3.3166248 |
s^2/n | 0.6190 | 0.5238 |
Sp^2
{(n1-1)*s1^2 + (n2-1)*s2^2} / {n1+n2-2}
=((21-1)*3.60555127546399^2+(21-1)*3.3166247903554^2)/(21+21-2)
12.0000
Test statistic, t = (Xbar1 - Xbar2)/sqrt(Sp^2*(1/n1+1/n2))
t = (64-67)/SQRT(12*(1/21+1/21))
t = -2.8062
df= n1+n2-2
21+21-2
40
p-value
2*(1-P(T<|t|)
2*(1-P(T<abs(-2.8062))
T.DIST.2T(abs(-2.8062),40)
0.0077
With t=-2.8, p<5%, i reject Ho and conclude that there no significant effect of distractions on memory performance. u1=u2
Get Answers For Free
Most questions answered within 1 hours.