Question

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 6 phones from the manufacturer had a mean range of 1300 feet with a standard deviation of 20 feet. A sample of 12 similar phones from its competitor had a mean range of 1290 feet with a standard deviation of 42 feet. Do the results support the manufacturer's claim? Let μ1 be the true mean range of the manufacturer's cordless telephone and μ2 be the true mean range of the competitor's cordless telephone. Use a significance level of α=0.05

for the test. Assume that the population variances are equal and that the two populations are normally distributed.

Step 1 of 4 :

State the null and alternative hypotheses for the test.

Homework Answers

Answer #1

Step 1 of 4 : The null and alternative hypothesis is ,

( Claim)

The test is right tailed test.

Step 2 of 4 : Since , the population variances are equal and unknown.

Therefore , use t-distribution.

Now , df=degrees of frrdom=n1+n2-2=6+12-2=16

The critical value is ,

; From t-table

Step 3 of 4 : Now , the pooled estimate is ,

The test statistic is ,

Step 4 of 4 : Decision : Here , the value of the test statistic does not lies in the rejection region.

Therefore , fail to reject Ho.

Conclusion : There is not sufficient evidence to support the manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 21 phones from the manufacturer had a mean range of 1140 feet with a standard deviation of 43 feet. A sample of 11 similar phones from its competitor had a mean range of 1110 feet with a standard deviation of 38 feet. Do the results support the manufacturer's claim? Let μ1 be the true mean...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 11 phones from the manufacturer had a mean range of 1070 feet with a standard deviation of 25 feet. A sample of 17 similar phones from its competitor had a mean range of 1040 feet with a standard deviation of 22 feet. Do the results support the manufacturer's claim? Let μ1 be the true mean...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 18 phones from the manufacturer had a mean range of 1270 feet with a standard deviation of 29 feet. A sample of 13 similar phones from its competitor had a mean range of 1250 feet with a standard deviation of 30 feet. Do the results support the manufacturer's claim? Let μ1 μ 1 be the...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 17 17 phones from the manufacturer had a mean range of 1100 1100 feet with a standard deviation of 33 33 feet. A sample of 10 10 similar phones from its competitor had a mean range of 1090 1090 feet with a standard deviation of 42 42 feet. Do the results support the manufacturer's claim?...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 8 phones from the manufacturer had a mean range of 1300 feet with a standard deviation of 43 feet. A sample of 14 similar phones from its competitor had a mean range of 1280 feet with a standard deviation of 36 feet. Do the results support the manufacturer's claim? Let μ1μ1 be the true mean...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 18 phones from the manufacturer had a mean range of 1230 feet with a standard deviation of 37 feet. A sample of 13 similar phones from its competitor had a mean range of 1190 feet with a standard deviation of 39 feet. Do the results support the manufacturer's claim? Let μ 1 be the true...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 18 phones from the manufacturer had a mean range of 1250 feet with a standard deviation of 31 feet. A sample of 11 similar phones from its competitor had a mean range of 1230 feet with a standard deviation of 33 feet. Do the results support the manufacturer's claim? Let μ 1 be the true...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 12 phones from the manufacturer had a mean range of 1010 feet with a standard deviation of 23 feet. A sample of 19 similar phones from its competitor had a mean range of 1000 feet with a standard deviation of 34 feet. Do the results support the manufacturer's claim? Let μ1 be the true mean...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 23 feet. Do the results support the manufacturer's claim? Let μ1 be the true mean...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater...
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 12 phones from the manufacturer had a mean range of 1150 feet with a standard deviation of 27 feet. A sample of 7 similar phones from its competitor had a mean range of 1100 feet with a standard deviation of 23 feet. Do the results support the manufacturer's claim? Let μ1μ1 be the true mean...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT