Question

we have sample space (S,P) where S is the power set of {1,2} and P(a) =...

we have sample space (S,P) where S is the power set of {1,2} and P(a) = |a| / |S| for all a in S (thus |S|=4). We define two random variables such that for all a in S we have X(a) = |a| and Y(a) = 1 if b is in a and 0 otherwise.

What is the probability that Y(a)=1?

what is the expected value of Y?

What is the variance of Y?

what is the value of P(X=1 | Y = 1)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero...
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero otherwise. 1. Find the constant, c, such that f(x,y) is a valid pmf. 2. Find the marginal distributions for X and Y . 3. Find the marginal means for both random variables. 4. Find the marginal variances for both random variables. 5. Find the correlation of X and Y . 6. Are the two variables independent? Justify.
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn...
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn by the following relation: Y=X12+X22+...+Xn2. Each of X variables is distributed via the normal distribution with following parameters: 1. Mean values of all Xi = 0 2. Variances are identical and are equal to ak2 Find probability density of a random value of Y.
We are given that n=15, the sample mean Ῡ=2.5, the sample standard deviation s=1.5 and random...
We are given that n=15, the sample mean Ῡ=2.5, the sample standard deviation s=1.5 and random variable Y distributed Normal with mean µ and variance σ2, where both µ and σ2 are unknown and we are being concentrated on testing the following set of hypothesis about the mean parameter of the population of interest. We are to test: H0 : µ ≥ 3.0 versus H1 : µ < 3.0. Compute the following: a) P- value of the test b)   ...
We are given that n=15, the sample mean Ῡ=2.5, the sample standard deviation s=1.5 and random...
We are given that n=15, the sample mean Ῡ=2.5, the sample standard deviation s=1.5 and random variable Y distributed Normal with mean µ and variance σ2, where both µ and σ2 are unknown and we are being concentrated on testing the following set of hypothesis about the mean parameter of the population of interest. We are to test: H0 : µ ≥ 3.0 versus H1 : µ < 3.0. Compute the following: a) P- value of the test b)   ...
We are given that n=15, the sample mean Ῡ=2.5, the sample standard deviation s=1.5 and random...
We are given that n=15, the sample mean Ῡ=2.5, the sample standard deviation s=1.5 and random variable Y distributed Normal with mean µ and variance σ2, where both µ and σ2 are unknown and we are being concentrated on testing the following set of hypothesis about the mean parameter of the population of interest. We are to test: H0 : µ ≥ 3.0 versus H1 : µ < 3.0. Compute the following: a) P- value of the test b)   ...
A Bernoulli trial is an experiment with the sample space S = {success, failure}. Let X...
A Bernoulli trial is an experiment with the sample space S = {success, failure}. Let X be the random variable on S defined by ? X(s) : 1 if s = success 0 if s = failure. Suppose the probability P ({success}) is equal to some value p ∈ (0, 1). (a) Tabulate for the rv X the probability distribution Px (X = x) in terms of p for x ∈ {0, 1}. (b) Give the expression for the cdf...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
Consider an axiomatic system that consists of elements in a set S and a set P...
Consider an axiomatic system that consists of elements in a set S and a set P of pairings of elements (a, b) that satisfy the following axioms: A1 If (a, b) is in P, then (b, a) is not in P. A2 If (a, b) is in P and (b, c) is in P, then (a, c) is in P. Given two models of the system, answer the questions below. M1: S= {1, 2, 3, 4}, P= {(1, 2), (2,...
Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X...
Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X = 1) = 1/3 and Y take the value 1 if X = 0 and 0 otherwise. Find the covariance and check if random variables are independent. How to check if they are independent since it does not mean that if the covariance is zero then the variables must be independent.
We have a vector space V = {p ⊆ Pn (ℝ) : p(α) = 0}, where...
We have a vector space V = {p ⊆ Pn (ℝ) : p(α) = 0}, where n > 1 and α ⊆ ℝ. 1) Determine the basis for V 2) Extend the basis of V to a basis for Pn (ℝ). Thanks alot in advance.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT