Question

Consider an axiomatic system that consists of elements in a set S and a set P...

Consider an axiomatic system that consists of elements in a set S and a set P of pairings of elements (a, b) that satisfy the following axioms:

A1 If (a, b) is in P, then (b, a) is not in P.

A2 If (a, b) is in P and (b, c) is in P, then (a, c) is in P.

Given two models of the system, answer the questions below.

M1: S= {1, 2, 3, 4}, P= {(1, 2), (2, 3), (1, 3)}

M2: Let S be the set of real numbers and let P

consist of all pairs (x, y) where x < y.

Q. Find another independent axiom A3 of the system, which is true in M1, but not in M2. Use this result to argue that the original system is not complete.

An example of such independent axiom:

A3 There is an element x in S such that (y, x) is not in P for any y in S. Then, A3 is true in M1 since there is 4 in S with no pairs in P containing. But, every element in S of M2, namely, every real number has infinitely many smaller numbers in S. Thus, M1 is a model of the augmented system containing A1, A2, A3, where as M2 is not. It concludes that the given system with A1 and A2 is not complete.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using field and order axioms prove the following theorems: (i) 0 is neither in P nor...
Using field and order axioms prove the following theorems: (i) 0 is neither in P nor in - P (ii) -(-A) = A (where A is a set, as defined in the axioms. (iii) Suppose a and b are elements of R. Then a<=b if and only if a<b or a=b (iv) Let x and y be elements of R. Then either x <= y or y <= x (or both). The order axioms given are : -A = (x...
Using field and order axioms prove the following theorems: (i) Let x, y, and z be...
Using field and order axioms prove the following theorems: (i) Let x, y, and z be elements of R, the a. If 0 < x, and y < z, then xy < xz b. If x < 0 and y < z, then xz < xy (ii) If x, y are elements of R and 0 < x < y, then 0 < y ^ -1 < x ^ -1 (iii) If x,y are elements of R and x <...
7. Answer the following questions true or false and provide an explanation. • If you think...
7. Answer the following questions true or false and provide an explanation. • If you think the statement is true, refer to a definition or theorem. • If false, give a counter-example to show that the statement is not true for all cases. (a) Let A be a 3 × 4 matrix. If A has a pivot on every row then the equation Ax = b has a unique solution for all b in R^3 . (b) If the augmented...
Let P be the set of all ordered pairs (a, b) where a and b are...
Let P be the set of all ordered pairs (a, b) where a and b are real numbers. Let us define a two-place relation ≡ on P by (a, b) ≡ (c, d) if and only if a^2 − c^2 = 2b − 2d where (a, b) and (c, d) belong to P. Prove that ≡ is an equivalence relation on P. Draw a diagram on the X × Y plane of the equivalence class that contains the point (2,...
Define p to be the set of all pairs (l,m) in N×N such that l≤m. Which...
Define p to be the set of all pairs (l,m) in N×N such that l≤m. Which of the conditions (a), (c), (r), (s), (t) does p satisfy? (a) For any two elements y and z in X with (y,z)∈r and (z,y)∈r, we have y=z .(c) For any two elements y and z in X, we have (y,z)∈r or (z,y)∈r. (r) For each element x in X, we have (x,x)∈r. (s) For any two elements y and z in X with...
Consider the set of all ordered pairs of real numbers with standard vector addition but with...
Consider the set of all ordered pairs of real numbers with standard vector addition but with scalar multiplication defined by  k(x,y)=(k^2x,k^2y). I know this violates (alpha + beta)x = alphax + betax, but I'm not for sure how to figure that out? How would I figure out which axioms it violates?
1. (a) Let S be a nonempty set of real numbers that is bounded above. Prove...
1. (a) Let S be a nonempty set of real numbers that is bounded above. Prove that if u and v are both least upper bounds of S, then u = v. (b) Let a > 0 be a real number. Define S := {1 − a n : n ∈ N}. Prove that if epsilon > 0, then there is an element x ∈ S such that x > 1−epsilon.
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and...
Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and a CD player. Let A1 be the event that the receiver functions properly throughout the warranty period, A2 be the event that the speakers function properly throughout the warranty period, and A3 be the event that the CD player functions properly throughout the warranty period. Suppose that these events are (mutually) independent with P(A1) = 0.94, P(A2) = 0.96, and P(A3) = 0.90. (Round...
4. (Sec 2.5) Consider purchasing a system of audio components consisting of a receiver, a pair...
4. (Sec 2.5) Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and a CD player. Let A1 be the event that the receiver functions properly throughout the warranty period, A2 the event that the speakers function properly throughout the warranty period, and A3 the event that the CD player functions properly throughout the warranty period. Suppose that these events are (mutually) independent with P(A1) = .95, P(A2) = .98 and P(A3) = .80....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT