Question

Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X...

Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X = 1) = 1/3 and Y take the value 1 if X = 0 and 0 otherwise. Find the covariance and check if random variables are independent.

How to check if they are independent since it does not mean that if the covariance is zero then the variables must be independent.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1. 1. Are X and Y independent? Explain with a picture. 2. Find the marginal pdf fX(x). 3. Find P( Y < 1/8 | X = 1/2 )
Consider the following joint distribution between random variables X and Y: Y=0 Y=1 Y=2 X=0 P(X=0,...
Consider the following joint distribution between random variables X and Y: Y=0 Y=1 Y=2 X=0 P(X=0, Y=0) = 5/20 P(X=0, Y=1) =3/20 P(X=0, Y=2) = 1/20 X=1 P(X=1, Y=0) = 3/20 P(X=1, Y=1) = 4/20 P(X=1, Y=2) = 4/20 Further, E[X] = 0.55, E[Y] = 0.85, Var[X] = 0.2475 and Var[Y] = 0.6275. a. (6 points) Find the covariance between X and Y. b. (6 points) Find E[X | Y = 0]. c. (6 points) Are X and Y independent?...
If X and Y are discrete random variables with joint PMF P(X,Y )(x, y) = c(2x+y)(x!...
If X and Y are discrete random variables with joint PMF P(X,Y )(x, y) = c(2x+y)(x! y!) for x = 0, 1, 2, … and y = 0, 1, 2, … and zero otherwise a) Find the constant c. b) Find the marginal PMFs of X and Y. Identify their distribution along with their parameters. c) Are X and Y independent? Why/why not?
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4. 1) What is the covariance between XY and X. 2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z. 3) Use the answer in part 2 to compute the E(Z).
Let X and Y be independent Geometric(p) random variables. What is P(X<Y)?
Let X and Y be independent Geometric(p) random variables. What is P(X<Y)?
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0&
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0             ,     otherwise a. Find the value of the constant c. b. Find P[x < 1 and  y < 2]
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.