Question

Given a random sample of size ? from a normal population with ? = 0, use...

Given a random sample of size ? from a normal population with ? = 0, use the Neyman-Pearson lemma to construct the most powerful critical region of size ? to test the null hypothesis ? = ?0 against the alternative ? = ?1> ?0 .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , X12 denote a random sample of size 12 from...
Let X1, X2, . . . , X12 denote a random sample of size 12 from Poisson distribution with mean θ. a) Use Neyman-Pearson Lemma to show that the critical region defined by (12∑i=1) Xi, ≤2 is a best critical region for testing H0 :θ=1/2 against H1 :θ=1/3. b.) If K(θ) is the power function of this test, find K(1/2) and K(1/3). What is the significance level, the probability of the 1st type error, the probability of the 2nd type...
Using a random sample of size 77 from a normal population with variance of 1 but...
Using a random sample of size 77 from a normal population with variance of 1 but unknown mean, we wish to test the null hypothesis that H0: μ ≥ 1 against the alternative that Ha: μ <1. Choose a test statistic. Identify a non-crappy rejection region such that size of the test (α) is 5%. If π(-1,000) ≈ 0, then the rejection region is crappy. Find π(0).
Let ?1 and ?2 be a random sample of size 2 from a normal distribution ?(?,...
Let ?1 and ?2 be a random sample of size 2 from a normal distribution ?(?, 1). Find the likelihood ratio critical region of size 0.005 for testing the null hypothesis ??: ? = 0 against the composite alternative ?1: ? ≠ 0?
A random sample of 70 observations from a normally distributed population possesses a sample mean equal...
A random sample of 70 observations from a normally distributed population possesses a sample mean equal to 26.2 and a sample standard deviation equal to 4.1 Use rejection region to test the null hypothesis that the mean of the population is 28 against the alternative hypothesis, μ<28 use α = .1 Use p-value to tell the null hypothesis that the mean of the population is 28 against the alternative hypothesis that the mean of the population is 28 against the...
A random sample of size 5 is drawn from a normal population. The five data items...
A random sample of size 5 is drawn from a normal population. The five data items are 14.5, 14.2, 14.4, 14.3, and 14.6 Test the null hypothesis H0 : µ = 14.0 versus the alternative hypothesis Ha : µ 6= 14.0. Use an α = 0.05 test.
The observations in the sample are random and independent. The underlying population distribution is approximately normal....
The observations in the sample are random and independent. The underlying population distribution is approximately normal. We consider H0: =15 against Ha: 15. with =0.05. Sample statistics: = 16, sx= 0.75, n= 10. 1. For the given data, find the test statistic t-test=4.22 t-test=0.42 t-test=0.75 z-test=8.44 z-test=7.5 2. Decide whether the test statistic is in the rejection region and whether you should reject or fail to reject the null hypothesis. the test statistic is in the rejection region, reject the...
Let X1, X2, . . . , Xn be a random sample from the normal distribution...
Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 36). (a) Show that a uniformly most powerful critical region for testing H0 : µ = 50 against H1 : µ < 50 is given by C2 = {x : x ≤ c}. Find the values of c for α = 0.10.
suppose a random sample of 25 is taken from a population that follows a normal distribution...
suppose a random sample of 25 is taken from a population that follows a normal distribution with unknown mean and a known variance of 144. Provide the null and alternative hypothesis necessary to determine if there is evidence that the mean of the population is greater than 100. Using the sample mean ybar as the test statistic and a rejection region of the form {ybar>k} find the value of k so that alpha=.15 Using the sample mean ybar as the...
A simple random sample of size nequals40 is drawn from a population. The sample mean is...
A simple random sample of size nequals40 is drawn from a population. The sample mean is found to be 110.4?, and the sample standard deviation is found to be 23.3. Is the population mean greater than 100 at the alpha=0.01 level of? significance? Determine the null and alternative hypotheses. Compute the test statistic. Determine the? P-value. What is the result of the hypothesis? test?
A simple random sample of size 10 has a mean of 69.0 and a sample standard...
A simple random sample of size 10 has a mean of 69.0 and a sample standard deviation of 9.0. A student would like to test the null hypothesis, ?0:?=75.0 , against the alternative, ?1:?<75.0 . Construct a confidence interval corresponding to this test at significance level ?=10% . Give your answer precise to two decimal places. What is the upper and lower limit?