Question

suppose a random sample of 25 is taken from a population that follows a normal distribution...

suppose a random sample of 25 is taken from a population that follows a normal distribution with unknown mean and a known variance of 144. Provide the null and alternative hypothesis necessary to determine if there is evidence that the mean of the population is greater than 100. Using the sample mean ybar as the test statistic and a rejection region of the form {ybar>k} find the value of k so that alpha=.15 Using the sample mean ybar as the test statistic and the rejection region {ybar>k} find the type2 error rate when the true mean of the population is known to be 110. To decrease the type2 error rate we can increase the size of the sample taken. How large would the sample need to be so that alpha=.15 and beta=.05 when using the test statistic ybar, rejection region {ybar>k} and true value of the mean to be 110?

Homework Answers

Answer #1

Hypotheses are:

Test is right tailed. The critical value of sample mean for which we will reject the null hypothesis using excel function "=NORMSINV(1-0.15)" is 1.036.

So critical value of sample mean for which we will reject the null hypothesis is

The rejection region is :

The z-score for and is

The type II error is

--------------------------------

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using a random sample of size 77 from a normal population with variance of 1 but...
Using a random sample of size 77 from a normal population with variance of 1 but unknown mean, we wish to test the null hypothesis that H0: μ ≥ 1 against the alternative that Ha: μ <1. Choose a test statistic. Identify a non-crappy rejection region such that size of the test (α) is 5%. If π(-1,000) ≈ 0, then the rejection region is crappy. Find π(0).
Let ?1, ?2, … , ?? denote a random sample from a normal population distribution with...
Let ?1, ?2, … , ?? denote a random sample from a normal population distribution with a known value of ?. (a) For testing the hypotheses ?0: ? = ?0 versus ??: ? > ?0 where ?0 is a fixed number, show that the test with test statistic ?̅ and rejection region ?̅≥ ?0 + 2.33(?⁄√?) has a significance level 0.01. (b) Suppose the procedure of part (a) is used to test ?0: ? ≤ ?0 versus ??: ? >...
The observations in the sample are random and independent. The underlying population distribution is approximately normal....
The observations in the sample are random and independent. The underlying population distribution is approximately normal. We consider H0: =15 against Ha: 15. with =0.05. Sample statistics: = 16, sx= 0.75, n= 10. 1. For the given data, find the test statistic t-test=4.22 t-test=0.42 t-test=0.75 z-test=8.44 z-test=7.5 2. Decide whether the test statistic is in the rejection region and whether you should reject or fail to reject the null hypothesis. the test statistic is in the rejection region, reject the...
A random sample of 500 of a certain brand of cola was taken to see whether...
A random sample of 500 of a certain brand of cola was taken to see whether the mean weight was 16 fluid ounces as indicated on the container. For the 500 sampled, the mean was found to be 15.9988 with a standard deviation of 0.0985. Does this brand of cola have a population mean of 16 fluid ounces? What is the p-value for this hypothesis test? What is the test statistic for this hypothesis test? What is the critical value...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and sample variance of 18.1 A sample of size 14 is taken from the second population: Sample mean of 98.7 and sample variance of 9.7 a)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the rejection region. b)In order to decide whether pooling is appropriate or not, performing a test at α...
Based on a random sample of 21 observations selected from a normal population, the sample standard...
Based on a random sample of 21 observations selected from a normal population, the sample standard deviation is s = 7.2. We test Ho : σ2 = 30 vs. Ha : σ2 > 30 at the 0.05 level of significance. Find the rejection region and the observed value of the test statistic. (a) The rejection region is χ2 > 32.6705 with 21 degrees of freedom and the observed value of the test statistic is 34.56 (b) The rejection region is...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and sample variance of 18.1 A sample of size 14 is taken from the second population: Sample mean of 98.7 and sample variance of 9.7 a)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the rejection region. b)In order to decide whether pooling is appropriate or not, performing a test at α...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and sample variance of 18.1 A sample of size 14 is taken from the second population: Sample mean of 98.7 and sample variance of 9.7 1)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the rejection region. 2)In order to decide whether pooling is appropriate or not, performing a test at α...
A random sample of size n1 = 25, taken from a normal population with a standard...
A random sample of size n1 = 25, taken from a normal population with a standard deviation σ1 = 5.2, has a sample mean = 85. A second random sample of size n2 = 36, taken from a different normal population with a standard deviation σ2 = 3.4, has a sample mean = 83. Test the claim that both means are equal at a 5% significance level. Find P-value.
A random sample of 11 observations was taken from a normal population. The sample mean and...
A random sample of 11 observations was taken from a normal population. The sample mean and standard deviation are xbar= 74.5 and s= 9. Can we infer at the 5% significance level that the population mean is greater than 70? I already found the test statistic (1.66) but I’m at a loss for how to find the p-value.