Question

A random sample of 70 observations from a normally distributed population possesses a sample mean equal...

A random sample of 70 observations from a normally distributed population possesses a sample mean equal to 26.2 and a sample standard deviation equal to 4.1

Use rejection region to test the null hypothesis that the mean of the population is 28 against the alternative hypothesis, μ<28 use α = .1

Use p-value to tell the null hypothesis that the mean of the population is 28 against the alternative hypothesis that the mean of the population is 28 against the alternative hypothesis, μ ≠ 28 use  α = .1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following sample of six measurements was randomly selected from a normally distributed population: 2,5,−2,7,2,4. (a.)Test...
The following sample of six measurements was randomly selected from a normally distributed population: 2,5,−2,7,2,4. (a.)Test the null hypothesis that the mean of the population is 2 against the alternative hypothesis, μ < 2. Use α=.05. (b.)Test the null hypothesis that the mean of the population is 2 against the alternative hypothesis, μ isn't equal to 2. Use α=.05. (c.) Find the observed significance level for each test.
A random sample of 121 observations from a population with standard deviation 50 yielded a sample...
A random sample of 121 observations from a population with standard deviation 50 yielded a sample mean of 120. (a.)Test the null hypothesis that μ= 110 against the alternative hypothesis that μ >110, using α=.05 Interpret the results of the test. (b.)Test the null hypothesis thatμ= 110 against the alternative hypothesis thatμ6= 110, using α=.05 Interpret the results of the test. (c.)compare the p−values of the two tests you conducted. Explain why the results differ.
A random sample of 27 observations taken from a population that is normally distributed produced a...
A random sample of 27 observations taken from a population that is normally distributed produced a sample mean of 58.5 and a standard deviation of 7.5. Find the range for the p-value and the critical and observed values of t for the following test of hypothesis, using α=0.01. H0: μ=55 versus H1: μ>55. Use the t distribution table to find a range for the p-value. Round your answers for the values of t to three decimal places. Enter your answer;...
Using a random sample of size 77 from a normal population with variance of 1 but...
Using a random sample of size 77 from a normal population with variance of 1 but unknown mean, we wish to test the null hypothesis that H0: μ ≥ 1 against the alternative that Ha: μ <1. Choose a test statistic. Identify a non-crappy rejection region such that size of the test (α) is 5%. If π(-1,000) ≈ 0, then the rejection region is crappy. Find π(0).
Suppose a random sample of size 22 is taken from a normally distributed population, and the...
Suppose a random sample of size 22 is taken from a normally distributed population, and the sample mean and variance are calculated to be x¯=5.29  and s2=0.5 respectively. Use this information to test the null hypothesis H0:μ=5  versus the alternative hypothesis HA:μ>5 . a) What is the value of the test statistic, for testing the null hypothesis that the population mean is equal to 5? Round your response to at least 3 decimal places. b) The p-value falls within which one of...
A random sample of 100 observations from a population with standard deviation 17.18 yielded a sample...
A random sample of 100 observations from a population with standard deviation 17.18 yielded a sample mean of 93.3 1. Given that the null hypothesis is μ=90 and the alternative hypothesis is μ>90 using α=.05, find the following: (a) Test statistic = (b) P - value: (c) The conclusion for this test is: A. There is insufficient evidence to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is...
A random sample of 17 observations taken from a population that is normally distributed produced a...
A random sample of 17 observations taken from a population that is normally distributed produced a sample mean of 42.4 and a standard deviation of 8. Find the range for the p-value and the critical and observed values of t for each of the following tests of hypotheses using, α=0.01. Use the t distribution table to find a range for the p-value. Round your answers for the values of t to three decimal places. a. H0: μ=46 versus H1: μ<46....
A random sample of 100 observations from a population with standard deviation 23.35 yielded a sample...
A random sample of 100 observations from a population with standard deviation 23.35 yielded a sample mean of 94.5. 1. Given that the null hypothesis is μ=90, and the alternative hypothesis is μ>90 and using α=.05, find the following: (a) Test statistic = (b) P - value: (c) The conclusion for this test is: A. Reject the null hypothesis B. There is insufficient evidence to reject the null hypothesis C. None of the above 2. Given that the null hypothesis...
A random sample of 100100 observations from a population with standard deviation 10.7610.76 yielded a sample...
A random sample of 100100 observations from a population with standard deviation 10.7610.76 yielded a sample mean of 91.891.8. 1. Given that the null hypothesis is μ=90μ=90 and the alternative hypothesis is μ>90μ>90 using α=.05α=.05, find the following: (a) Test statistic ==   (b)  P - value:    (c) The conclusion for this test is: A. There is insufficient evidence to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is μ=90μ=90...
A random sample of 100100 observations from a population with standard deviation 12.6312.63 yielded a sample...
A random sample of 100100 observations from a population with standard deviation 12.6312.63 yielded a sample mean of 92.392.3. 1. Given that the null hypothesis is μ=90μ=90 and the alternative hypothesis is μ>90μ>90 using α=.05α=.05, find the following: (a) Test statistic == (b) P - value: (c) The conclusion for this test is: A. Reject the null hypothesis B. There is insufficient evidence to reject the null hypothesis C. None of the above 2. Given that the null hypothesis is...