Question

Let X1, X2, . . . , Xn be a random sample from the normal distribution...

Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 36). (a) Show that a uniformly most powerful critical region for testing H0 : µ = 50 against H1 : µ < 50 is given by C2 = {x : x ≤ c}. Find the values of c for α = 0.10.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , X12 denote a random sample of size 12 from...
Let X1, X2, . . . , X12 denote a random sample of size 12 from Poisson distribution with mean θ. a) Use Neyman-Pearson Lemma to show that the critical region defined by (12∑i=1) Xi, ≤2 is a best critical region for testing H0 :θ=1/2 against H1 :θ=1/3. b.) If K(θ) is the power function of this test, find K(1/2) and K(1/3). What is the significance level, the probability of the 1st type error, the probability of the 2nd type...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution f(x) = (1/θ)e^(−x/θ) for x ≥ 0. Show that likelihood ratio test of H0 : θ = θ0 against H1 : θ ≠ θ0 is based on the statistic n∑i=1 Xi.
Let X1, X2 · · · , Xn be a random sample from the distribution with...
Let X1, X2 · · · , Xn be a random sample from the distribution with PDF, f(x) = (θ + 1)x^θ , 0 < x < 1, θ > −1. Find an estimator for θ using the maximum likelihood
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with unknown α and unknown β. Find the method of moments estimators for α and β
1. Let X1, X2, . . . , Xn be a random sample from a distribution...
1. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x, θ) = 1 3θ 4 x 3 e −x/θ , where 0 < x < ∞ and 0 < θ < ∞. Find the maximum likelihood estimator of ˆθ.
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
Exercise 4. Suppose that X = (X1, · · · , Xn) is a random sample...
Exercise 4. Suppose that X = (X1, · · · , Xn) is a random sample from a normal distribution with unknown mean µ and known variance σ^2 . We wish to test the following hypotheses at the significance level α. Suppose the observed values are x1, · · · , xn. For each case, find the expression of the p-value, and state your decision rule based on the p-values a. H0 : µ = µ0 vs. Ha : µ...
Let X1,..., Xn be a random sample from the Rayleigh distribution: Use the likelihood ratio test...
Let X1,..., Xn be a random sample from the Rayleigh distribution: Use the likelihood ratio test to give a form of test (without specifying the value of the critical value) for H0: θ= 1 versus H1:≠1
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/xlnθ , 1 < x < θ. c) Let Zn = nlnY1. Find the limiting distribution of Zn. d) Let Wn = nln( θ/Yn ). Find the limiting distribution of Wn.
Let X1,..., Xn be a random sample from the Geometric distribution: Use the likelihood ratio test...
Let X1,..., Xn be a random sample from the Geometric distribution: Use the likelihood ratio test to give a form of test (without specifying the value of the critical value) for H0: p= 1 versus H1:p≠1