Question

x 20 30 40 50 60 y 100 97 89 83 70 ​(a) Use technology to...

x

20

30

40

50

60

y

100

97

89

83

70

​(a) Use technology to find the estimates of

beta 0β0

and

beta 1β1.

beta 0β0almost equals≈b 0b0equals=

​(Round to two decimal places as​ needed.)

beta 1β1almost equals≈b 1b1equals=

​(Round to two decimal places as​ needed.) ​(b) Use technology to compute the standard​ error, the point estimate for

sigmaσ.

s Subscript eseequals=

​(Round to four decimal places as​ needed.)

Homework Answers

Answer #1

(A) Copy and paste the data set into excel sheet

use excel function INTERCEPT, SLOPE and STEYX to find the intercept (Bo), slope(b1) and standard error Se

we get

= INTERCEPT(known y's, known x's)

select y data set as known y's and x data set as known x's

we get

= 117.40

and

= SLOPE(known y's, known x's)

select y data set as known y's and x data set as known x's

we get

= -0.74

(B) Se = STEYX(known y's, known x's)

select y data set as known y's and x data set as known x's

we get

Se = 3.0111

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 89 83 70 ​(a) Use technology to find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=nothing ​(Round to two decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=nothing ​(Round to two decimal places as​ needed.)
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55 77 88 y 44 66 77 1313 1515 ​(a)  Find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=negative 3.244−3.244 ​(Round to three decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=2.2672.267 ​(Round to three decimal places as​ needed.)​(b)   Compute the standard​ error, the point estimate for sigmaσ. s Subscript eseequals=nothing ​(Round to four decimal places as​ needed.)
Height (inches) x: 27 25 27.75 26.75 26.5 Head Circumference (inches) y: 17.5 16.9 17.6 17.3...
Height (inches) x: 27 25 27.75 26.75 26.5 Head Circumference (inches) y: 17.5 16.9 17.6 17.3 17.3 A pediatrician wants to determine the relation that may exist between a​ child's height and head circumference. She randomly selects 5 children and measures their height and head circumference. The data are summarized below. Complete parts​ (a) through​ (f) below. a) Treating height as the explanatory​ variable, x, use technology to determine the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b...
A pediatrician wants to determine the relation that may exist between a​ child's height and head...
A pediatrician wants to determine the relation that may exist between a​ child's height and head circumference. She randomly selects 5 children and measures their height and head circumference. The data are summarized below. Complete parts​ (a) through​ (f) below. Height​ (inches), x 27.7527.75 2525 26.7526.75 27.527.5 25.525.5 Head Circumference​ (inches), y 17.617.6 16.916.9 17.317.3 17.517.5 17.117.1 ​(a) Treating height as the explanatory​ variable, x, use technology to determine the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0≈b0=114.60 ​(Round to two decimal places as​ needed.) β1≈b1=−0.68 ​(Round to two decimal places as​ needed.) ​ (b) Use technology to compute the standard​ error, the point estimate for σ. Se=3.7771 ​(Round to four decimal places as​ needed.) ​(c) Assuming the residuals are normally​ distributed, use technology to determine sb1. sb1=__?__...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0 ≈b0=114.60 ​(Round to two decimal places as​ needed.) β1≈b1=−0.68 ​(Round to two decimal places as​ needed.) ​(b) Use technology to compute the standard​ error, the point estimate for σ. se=3.7771 ​(Round to four decimal places as​ needed.) ​(c) Assuming the residuals are normally​ distributed, use technology to determine sb1. sb1equals=__?__...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0≈b0equals=114.60 ​(Round to two decimal places as​ needed.) β1≈b1=−0.68 ​(Round to two decimal places as​ needed.) ​ (b) Use technology to compute the standard​ error, the point estimate for σ. Se=3.7771 ​(Round to four decimal places as​ needed.) ​(c) Assuming the residuals are normally​ distributed, use technology to determine sb1. sb1=__?__...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0≈b0=__?__ ​(Round to two decimal places as​ needed.) β1≈b1=__?__ ​(Round to two decimal places as​ needed.)
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 93 81 68 ​(a) Use technology to find the estimates of beta β0 and beta β1. beta β0almost equals≈b0equals=nothing ​(Round to two decimal places as​ needed.) beta β1almost equals≈b1equals=nothing ​(Round to two decimal places as​ needed.) B.)
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 102 95 91 83 70 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 almost equals b0= ​ (Round to two decimal places as​ needed.) beta1 almost equals b1= (Round to two decimal places as​ needed.) (b) Use the technology to compute the standard error, the point estimate for o. Sc= (Round to four...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT