For the data set shown below, complete parts (a) through (d) below.
x |
33 |
44 |
55 |
77 |
88 |
|
---|---|---|---|---|---|---|
y |
44 |
66 |
77 |
1313 |
1515 |
(a) Find the estimates of
beta 0β0
and
beta 1β1.
beta 0β0almost equals≈b 0b0equals=negative 3.244−3.244
(Round to three decimal places as needed.)
beta 1β1almost equals≈b 1b1equals=2.2672.267
(Round to three decimal places as needed.)(b)
Compute the standard error, the point estimate for sigmaσ.
s Subscript eseequals=nothing
(Round to four decimal places as needed.)
x | y |
33 | 44 |
44 | 66 |
55 | 77 |
77 | 13 |
88 | 15 |
Regression Analysis: y versus x
The regression equation is
y = 96.06 - 0.8932 x
Model Summary
S | R-sq | R-sq(adj) |
23.8710 | 49.27% | 32.36% |
Analysis of Variance
Source | DF | SS | MS | F | P |
Regression | 1 | 1660.52 | 1660.52 | 2.91 | 0.186 |
Error | 3 | 1709.48 | 569.83 | ||
Total | 4 | 3370.00 |
Fitted Line: y versus x
Therefore estimate of
&
Standard error = 569.83
Get Answers For Free
Most questions answered within 1 hours.