Question

For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...

For the data set shown​ below, complete parts ​(a) through ​(d)

below.

x

20

30

40

50

60

y

100

97

89

83

70

​(a) Use technology to find the estimates of

beta 0β0

and

beta 1β1.

beta 0β0almost equals≈b 0b0equals=nothing

​(Round to two decimal places as​ needed.)

beta 1β1almost equals≈b 1b1equals=nothing

​(Round to two decimal places as​ needed.)

Homework Answers

Answer #1

We can use here Excel for regression equation

Step 1) Enter data in Excel .

Step 2) Data >>Data analysis >>Regression >>Select y and x values separately >>Ok

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55 77 88 y 44 66 77 1313 1515 ​(a)  Find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=negative 3.244−3.244 ​(Round to three decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=2.2672.267 ​(Round to three decimal places as​ needed.)​(b)   Compute the standard​ error, the point estimate for sigmaσ. s Subscript eseequals=nothing ​(Round to four decimal places as​ needed.)
x 20 30 40 50 60 y 100 97 89 83 70 ​(a) Use technology to...
x 20 30 40 50 60 y 100 97 89 83 70 ​(a) Use technology to find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals= ​(Round to two decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals= ​(Round to two decimal places as​ needed.) ​(b) Use technology to compute the standard​ error, the point estimate for sigmaσ. s Subscript eseequals= ​(Round to four decimal places as​ needed.)
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 93 81 68 ​(a) Use technology to find the estimates of beta β0 and beta β1. beta β0almost equals≈b0equals=nothing ​(Round to two decimal places as​ needed.) beta β1almost equals≈b1equals=nothing ​(Round to two decimal places as​ needed.) B.)
A pediatrician wants to determine the relation that may exist between a​ child's height and head...
A pediatrician wants to determine the relation that may exist between a​ child's height and head circumference. She randomly selects 5 children and measures their height and head circumference. The data are summarized below. Complete parts​ (a) through​ (f) below. Height​ (inches), x 27.7527.75 2525 26.7526.75 27.527.5 25.525.5 Head Circumference​ (inches), y 17.617.6 16.916.9 17.317.3 17.517.5 17.117.1 ​(a) Treating height as the explanatory​ variable, x, use technology to determine the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 102 95 91 83 70 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 almost equals b0= ​ (Round to two decimal places as​ needed.) beta1 almost equals b1= (Round to two decimal places as​ needed.) (b) Use the technology to compute the standard error, the point estimate for o. Sc= (Round to four...
For the data set shown below, complete parts (a) through (d) below. X 20 30 40...
For the data set shown below, complete parts (a) through (d) below. X 20 30 40 50 60 Y 98 93 91 85 68 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 ~ b 0=_____​(Round to two decimal places as​ needed.) beta 1 ~ b 1=_____(Round to two decimal places as​ needed.) (b) Use technology to compute the standard error, the point estimate for o' (o with a little tag on the...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 98 95 91 83 68 ​(a) Use technology to find the estimates of β0 and β1. ANSWER: β0≈b=115.80 ​(Round to two decimal places as​ needed.) β1≈b1=−0.720 ​(Round to two decimal places as​ needed.) (b) Use technology to compute the standard​ error, the point estimate for σ. se=_______???? ​(Round to four decimal places as​ needed.) I need help answering this please. Please...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55 77 88 y 55 66 77 1212 1414 Find the estimates of beta 0β0 and beta 1β1.
For the data set shown​ below, complete parts ​(a) through ​(d) below. x y 20 98...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x y 20 98 30 95 40 89 50 85 60 72 (a) Use technology to find the estimates of Β0 and Β1. Β0 ≈ b0 = 112.6 ​(Round to two decimal places as​ needed.) Β1 ≈ b1 = -0.62 (Round to two decimal places as​ needed.) (b) Use technology to compute the standard​ error, the point estimate for σ. Se = __?__ ​(Round to four decimal places...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 93 89 85 70 (a) Find the estimates of β0 and β1. β0 ≈b0 = ____ ​(Round to two decimal places as​ needed.) β1 ≈b1 = ____ (Round to two decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for σ. se= ______ ( Rounding to four decimal places) ​(c)  Assuming the residuals are normally​ distributed, determine...