Question

A block of mass 20 kg on a horizontal surface where uk = 0.4is pushed against...

A block of mass 20 kg on a horizontal surface where uk = 0.4is pushed against an initially relaxed spring that has a force constant k = 100 N/m, compressing it 1.50 meters. It is then released, what is the maximum velocity of the mass? Hint the maximum velocity occurs before the relaxed spring equilibrium point.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A block of mass 3.40 kg is placed against a horizontal spring of constant k =...
A block of mass 3.40 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m. HINT (a) What is the elastic potential energy of the block-spring system (in J)? J (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. m/s
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
A block of mass 2.80 kg is placed against a horizontal spring of constant k =...
A block of mass 2.80 kg is placed against a horizontal spring of constant k = 805 N/m and pushed so the spring compresses by 0.0800 m. A) What is the elastic potential energy of the block-spring system (in J)? __________ J B) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. _______ M/S
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring...
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring with spring constant 1151.5 N/m. The inclined portion of the surface makes at an angle of 30 degrees to the horizontal and has a coefficient of kinetic friction of 0.27 with the mass. The mass is pushed against the spring until it is compressed a distance 0.15 and then released. How high (vertically), in meters, does the mass rise from the original height before...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A 3.00 kg mass is pushed against a spring and released. If the spring constant of...
A 3.00 kg mass is pushed against a spring and released. If the spring constant of the spring is 7500 N/m and the spring is compressed 10.0 cm. (a) What is the energy stored in the compressed spring? (b) What is the maximum speed ?0 of the mass? (c) The mass then travels across a rough surface and then up a smooth ramp. The speed at the beginning of the ramp is ?1 = 4.00 m/s. What is the work...
A 2.70 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on...
A 2.70 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 10.0 J of potential energy in it, the mass is suddenly released from rest. What is the greatest acceleration of the mass? Express your answer with the appropriate units.
A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20...
A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20 cm. Then the man releases the block, and the spring sends it sliding across a tabletop. It stops 90 cm from where you released it. The spring constant is 325 N/m. What is the block–table coefficient of kinetic friction? A. 0.47       B. 0.97 C. 0.57 D. 0.37
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT