Question

. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium

(a) if the surface is frictionless

(b) if the coefficient of kinetic friction between the block and the surface is 0.350

Answer #1

A block of mass m = 2.00 kg is attached to a spring of force
constant k = 600 N/m as shown in the figure below. The block is
pulled to a position xi = 5.35 cm to the right of equilibrium and
released from rest. (a) Find the speed the block has as it passes
through equilibrium if the horizontal surface is frictionless. m/s
(b) Find the speed the block has as it passes through equilibrium
(for the first...

A block of mass m = 0.53 kg attached to a spring with force
constant 119 N/m is free to move on a frictionless, horizontal
surface as in the figure below. The block is released from rest
after the spring is stretched a distance A = 0.13 m. (Indicate the
direction with the sign of your answer. Assume that the positive
direction is to the right.)
The left end of a horizontal spring is attached to a vertical
wall, and...

A horizontal spring attached to a wall has a force constant of
760 N/m. A block of mass 1.30 kg is attached to the spring and
oscillates freely on a horizontal, frictionless surface as in the
figure below. The initial goal of this problem is to find the
velocity at the equilibrium point after the block is released.
(c) Find the energy stored in the spring when the mass is
stretched 5.80 cm from equilibrium and again when the mass...

A 2.90 kg block on a horizontal floor is attached to a
horizontal spring that is initially compressed 0.0340 m . The
spring has force constant 850 N/m . The coefficient of kinetic
friction between the floor and the block is 0.42 . The block and
spring are released from rest and the block slides along the
floor.
Part A
What is the speed of the block when it has moved a distance of
0.0190 m from its initial position?...

A 28 kg block on a horizontal surface is attached to a
horizontal spring of spring constant k = 4.8 kN/m. The block is
pulled to the right so that the spring is stretched 7.2 cm beyond
its relaxed length, and the block is then released from rest. The
frictional force between the sliding block and the surface has a
magnitude of 37 N. (a) What is the kinetic energy of the block when
it has moved 1.6 cm from...

A block of mass m = 0.79 kg is attached to a spring with force
constant 123.0 N/m. The block is free to move on a frictionless,
horizontal surface as shown in the figure. The block is released
from rest after the spring is stretched a distance A = 0.10 m to
the right. What is the potential energy of the spring/block system
0.25 s after releasing the block?

A 0.24 kg mass is attached to a light spring with a force
constant of 30.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
b) speed of the oscillating mass when the spring is compressed
1.5 cm
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium position
(d) value of...

A 0.019 kg block on a horizontal frictionless surface is
attached to a string whose spring/force/elastic constant k is 120
N/m. The block is pulled from its equilibrium position at x=0 m to
a displacement x=+0.080 m and is released from rest. The block then
executes simple harmonic motion along x-axis (horizontal). When the
displacement is x=0.051 m, what is the kinetic energy of the block
in J?

A horizontal spring attached to a wall has a force constant of
k = 820 N/m. A block of mass m = 1.20 kg is
attached to the spring and rests on a frictionless, horizontal
surface as in the figure below
(a) The block is pulled to a position xi =
5.40 cm from equilibrium and released. Find the potential energy
stored in the spring when the block is 5.40 cm from
equilibrium.
(b) Find the speed of the block...

A horizontal spring attached to a wall has a force constant of
k = 720 N/m. A block of mass m = 1.90 kg is
attached to the spring and rests on a frictionless, horizontal
surface as in the figure below.
(a) The block is pulled to a position xi = 6.20
cm from equilibrium and released. Find the potential energy stored
in the spring when the block is 6.20 cm from equilibrium.
(b) Find the speed of the block...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 5 minutes ago

asked 16 minutes ago

asked 17 minutes ago

asked 29 minutes ago

asked 46 minutes ago

asked 48 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago