Question

A block of mass 2.80 kg is placed against a horizontal spring of constant k =...

A block of mass 2.80 kg is placed against a horizontal spring of constant k = 805 N/m and pushed so the spring compresses by 0.0800 m.

A) What is the elastic potential energy of the block-spring system (in J)?

__________ J

B) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring.

_______ M/S

Homework Answers

Answer #1

A. Elastic potential energy of block spring system can be find using below formula

  

B. In this case elastic potential energy is converted into kinetic energy.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 3.40 kg is placed against a horizontal spring of constant k =...
A block of mass 3.40 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m. HINT (a) What is the elastic potential energy of the block-spring system (in J)? J (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. m/s
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k = 1.28 N/m on a frictionless surface. The block is pulled 0.753 m from equilibrium and released. (a) What is the amplitude of the block's motion? (b) What is its period? (c) How long after release does the block take to first return to its equilibrium position? (d) What is its speed at that position? {b. 3.43 s, d. 1.38 m/s} a) A=0.753m b)...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 34.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 6.00 m up the incline from A, the block is moving up the incline at a speed of 6.45 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A 0.225 kg block attached to a light spring oscillates on a frictionless, horizontal table. The...
A 0.225 kg block attached to a light spring oscillates on a frictionless, horizontal table. The oscillation amplitude is A = 0.190 m and the block moves at 3.50 m/s as it passes through equilibrium at x = 0. (a) Find the spring constant, k (in N/m). N/m (b) Calculate the total energy (in J) of the block-spring system. J (c) Find the block's speed (in m/s) when x = A/2 m/s.
A student places a 1.200 kg block next to a spring of spring constant k=4960N/m. The...
A student places a 1.200 kg block next to a spring of spring constant k=4960N/m. The system rests is on a frictionless horizontal surface (see figure). The horizontal surface at the top of a building. The distance from the horizontal surface to the ground below is 7.00m. The student pushes the block against the spring until it is compressed a distance 0.100m. The block is then released so that is slides off the edge of the building. Final answers must...
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 31.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.10 m up the incline from A, the block is moving up the incline at a speed of 6.85 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A block of mass m = 0.79 kg is attached to a spring with force constant...
A block of mass m = 0.79 kg is attached to a spring with force constant 123.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.10 m to the right. What is the potential energy of the spring/block system 0.25 s after releasing the block?
A block of mass m = 2.00 kg is attached to a spring of force constant...
A block of mass m = 2.00 kg is attached to a spring of force constant k = 600 N/m as shown in the figure below. The block is pulled to a position xi = 5.35 cm to the right of equilibrium and released from rest. (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed the block has as it passes through equilibrium (for the first...