Question

A 2.70 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on...

A 2.70 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 10.0 J of potential energy in it, the mass is suddenly released from rest.

What is the greatest acceleration of the mass? Express your answer with the appropriate units.

Homework Answers

Answer #1

Here,

The mass of block is,

m= 2.70 kg

Then,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 3.40 kg is placed against a horizontal spring of constant k =...
A block of mass 3.40 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m. HINT (a) What is the elastic potential energy of the block-spring system (in J)? J (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. m/s
A block of mass 2.80 kg is placed against a horizontal spring of constant k =...
A block of mass 2.80 kg is placed against a horizontal spring of constant k = 805 N/m and pushed so the spring compresses by 0.0800 m. A) What is the elastic potential energy of the block-spring system (in J)? __________ J B) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. _______ M/S
A 3.00 kg mass is pushed against a spring and released. If the spring constant of...
A 3.00 kg mass is pushed against a spring and released. If the spring constant of the spring is 7500 N/m and the spring is compressed 10.0 cm. (a) What is the energy stored in the compressed spring? (b) What is the maximum speed ?0 of the mass? (c) The mass then travels across a rough surface and then up a smooth ramp. The speed at the beginning of the ramp is ?1 = 4.00 m/s. What is the work...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...
A block of mass m = 0.79 kg is attached to a spring with force constant...
A block of mass m = 0.79 kg is attached to a spring with force constant 123.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.10 m to the right. What is the potential energy of the spring/block system 0.25 s after releasing the block?
6) A mass of 3 kg is attached to a massless spring with a force constant...
6) A mass of 3 kg is attached to a massless spring with a force constant 500 N/m. The mass rests on a horizontal frictionless surface. The system is compressed a distance of 30 cm from the springs initial position and then released. The momentum of the mass when the spring passes its equilibrium position is? 8660.25m/s Is this right
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring...
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring with spring constant 1151.5 N/m. The inclined portion of the surface makes at an angle of 30 degrees to the horizontal and has a coefficient of kinetic friction of 0.27 with the mass. The mass is pushed against the spring until it is compressed a distance 0.15 and then released. How high (vertically), in meters, does the mass rise from the original height before...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT