Question

Merry Go Round A merry-go-round with a radius of R = 1.80 m and moment of...

Merry Go Round

A merry-go-round with a radius of R = 1.80 m and moment of inertia I = 201 kg-m2 spinning with an initial angular speed of ω = 1.5 rad/s in the counter clockwise direction when viewed from above. A person with mass m = 55 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round.

What is the magnitude of the initial angular momentum of the merry-go-round about the center?

What is the angular speed of the merry-go-round after the person jumps on?

What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

What is the angular speed of the merry-go-round after the person lets go?

Homework Answers

Answer #1

a)

Initial Angular momentum of the merry-go-round about the center

Li,m =IW =201*1.5 =301.5 Kg-m2/s

b)

By Conservation of angular momentum

Li = Lf

IW+mVR =(I+mR2)W'

301.5 + 55*4.5*1.8 =(201+55*1.82)*W'

W' = 747/379.2= 1.97 rad/s

c)

the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round

Li,person=mVR =55*4.5*1.8 =445.5 kg-m2

d)

The force needed by person to hold on

F=mW'R2 =55*1.97*1.82 = 351.04 N

e)

Linear velocity of the person right as they leave the merry-go-round is

V=RW' =1.8*1.97 = 3.546 m/s

f)

It should be same as c

W' =1.97 rad/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I = 182 kg-m2 is spinning with an initial angular speed of ω = 1.4 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 71 kg and velocity v = 4.4 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)What...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 186 kg-m2 is spinning with an initial angular speed of ω = 1.55 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 51 kg and velocity v = 5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. What...
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I = 182 kg-m2 is spinning with an initial angular speed of ω = 1.4 rad/s in the counter clockwise direction when viewed from above. A person with mass m = 71 kg and velocity v = 4.4 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 3)...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 206 kg-m2 is spinning with an initial angular speed of ? = 1.54 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 66 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)...
A merry-go-round with a a radius of R = 1.66 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.66 m and moment of inertia I = 217 kg-m2 is spinning with an initial angular speed of ω = 1.57 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 61 kg and velocity v = 4.8 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 4)...
A merry-go-round with a a radius of R = 1.62 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.62 m and moment of inertia I = 215 kg-m2 is spinning with an initial angular speed of ω = 1.52 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 56 kg and velocity v = 4.6 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. What...
A playground merry-go-round has a radius R and a rotational inertia I. When the merry-go-round is...
A playground merry-go-round has a radius R and a rotational inertia I. When the merry-go-round is at rest, a child with mass m runs with speed v along a line tangent to the rim and jumps on. The angular velocity of the merry-go-round is then
A disk-shaped merry-go-round of radius 2.93 m and mass 185 kg rotates freely with an angular...
A disk-shaped merry-go-round of radius 2.93 m and mass 185 kg rotates freely with an angular speed of 0.621 rev/s . A 60.4 kg person running tangential to the rim of the merry-go-round at 3.51 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim. What is the final angular speed of the merry-go-round?
A disk-shaped merry-go-round of radius 2.63 m and mass 155 kg rotates freely with an angular...
A disk-shaped merry-go-round of radius 2.63 m and mass 155 kg rotates freely with an angular speed of 0.558 rev/s. A 59.4 kg person running tangential to the rim of the merry-go-round at 3.58 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim. (a) Does the kinetic energy of the system increase, decrease, or stay the same when the person jumps on the merry-go-round?...
10 kids are riding on a merry-go-round. The merry-go-round has a radius of 3 m and...
10 kids are riding on a merry-go-round. The merry-go-round has a radius of 3 m and a mass of 2000 kg, and it is spinning with an angular velocity of 2 rad/s. The kids are riding at the rim of the merry-go-round, and they each have a mass of 30 kg. All of the kids jump radially off the merry-go-round, all at the same time. What would the angular velocity of the merry-go-round be after the kids jump off?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT