Question

A 5.00 grams object is pressed {y} cm against a vertical spring whose elastic constant is...

A 5.00 grams object is pressed {y} cm against a vertical spring whose elastic constant is 3000 N/m.

How high will the object go up in meters?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 0.2 kg mass is pushed down against a vertical spring with a spring constant k...
a 0.2 kg mass is pushed down against a vertical spring with a spring constant k = 1000 N/m. when the spring is compressed by 10 cm, the object is let go. what vertical height above the release point will the obhect reach? give answer in meters
A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A...
A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A ball of mass 320 grams is placed at rest on top of the compressed spring. Take that the height of the ball at this position is zero. The spring is then released so the ball is shot straight up. a)Find the total initial energy of the system consisting of the ball and the spring. b)Find the total potential (i.e before the ball is shot)...
A mass of 3.8 is placed on a stiff vertical spring, which has a spring constant...
A mass of 3.8 is placed on a stiff vertical spring, which has a spring constant of 950n/m The object is then pressed against the spring until it has been compressed a distance of 88.7cm. The mass is then released and is allowed to be thrown up into the air. a What will be the elastic potential energy stored on the spring just before the mass is released? b What will be the gravitational potential energy be of this mass...
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the...
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the spring is compressed by 10 cm the object is let go. what is the speed of the object the second its let go from the spring. (i.e. the spring is at its equilibrium length) answer in m/s
. A 50 g plastic cube is pressed against a spring, compressing the spring by 10...
. A 50 g plastic cube is pressed against a spring, compressing the spring by 10 cm. The spring constant is 25 N/m. The cube is 22 cm from the bottom of a 30° slope. Once the cube is released, to what height does the cube slide? The coefficient of kinetic friction on the flat surface is .20. There is no friction up the ramp.
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the block compresses the spring 14.8 cm. The spring rests at the bottom of a ramp inclined at 64.3o to the horizontal. A) Determine how far up the incline the block moves before it stops if there is no friction between the block and the ramp. B) How far up the incline does the block move before it stops if the coefficient of kinetic friction...
A 20.6 kg object oscillates at the end of a vertical spring that has an elastic...
A 20.6 kg object oscillates at the end of a vertical spring that has an elastic constant of 2.05x104 N/m. The effect of air resistance is represented by the coefficient of damping b = 300.0 Ns/m. a) Calculate the angular frequency of the damped oscillation. b) How much would the damping coefficient b have to be for there to be no oscillations?
A 190-g block is pressed against a spring of force constant 1.20 kN/m until the block...
A 190-g block is pressed against a spring of force constant 1.20 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.366...
A 225-g block is pressed against a spring of force constant 1.26 kN/m until the block...
A 225-g block is pressed against a spring of force constant 1.26 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.369...