Question

a 0.2 kg mass is pushed down against a vertical spring with a spring constant k...

a 0.2 kg mass is pushed down against a vertical spring with a spring constant k = 1000 N/m. when the spring is compressed by 10 cm, the object is let go. what vertical height above the release point will the obhect reach? give answer in meters

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the...
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the spring is compressed by 10 cm the object is let go. what is the speed of the object the second its let go from the spring. (i.e. the spring is at its equilibrium length) answer in m/s
A 3.00 kg mass is pushed against a spring and released. If the spring constant of...
A 3.00 kg mass is pushed against a spring and released. If the spring constant of the spring is 7500 N/m and the spring is compressed 10.0 cm. (a) What is the energy stored in the compressed spring? (b) What is the maximum speed ?0 of the mass? (c) The mass then travels across a rough surface and then up a smooth ramp. The speed at the beginning of the ramp is ?1 = 4.00 m/s. What is the work...
A cart of unknown mass is pushed 3.61 cm against a hoop spring (spring constant 59.00...
A cart of unknown mass is pushed 3.61 cm against a hoop spring (spring constant 59.00 N/m) and released, just as in the lab experiment. It is observed to roll down the track (after losing contact with the spring) at constant speed v. A second spring has spring constant 80.00 N/m. If the experiment is repeated, by what distance should this second spring be compressed in order for the cart to acquire the same final speed v? Answer in cm
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with...
A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with a spring constant of 1190 N/m . If the spring was compressed 0.170 m before pushing the ball straight up, what is the maximum height that the ball will reach above the initial position?
3. An 8 kg stone rests on a vertical spring of force constant 785 N /...
3. An 8 kg stone rests on a vertical spring of force constant 785 N / m. The stone is pushed down about 30 cm and released. (a) Obtain the elastic potential energy of the compressed spring just before releasing it (b) Obtain the maximum height reached by the stone (c) Obtain the velocity just after it leaves the spring.
A 5.00 grams object is pressed {y} cm against a vertical spring whose elastic constant is...
A 5.00 grams object is pressed {y} cm against a vertical spring whose elastic constant is 3000 N/m. How high will the object go up in meters?
A block of mass 20 kg on a horizontal surface where uk = 0.4is pushed against...
A block of mass 20 kg on a horizontal surface where uk = 0.4is pushed against an initially relaxed spring that has a force constant k = 100 N/m, compressing it 1.50 meters. It is then released, what is the maximum velocity of the mass? Hint the maximum velocity occurs before the relaxed spring equilibrium point.
A block of mass 3.40 kg is placed against a horizontal spring of constant k =...
A block of mass 3.40 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m. HINT (a) What is the elastic potential energy of the block-spring system (in J)? J (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. m/s
A block of mass 2.80 kg is placed against a horizontal spring of constant k =...
A block of mass 2.80 kg is placed against a horizontal spring of constant k = 805 N/m and pushed so the spring compresses by 0.0800 m. A) What is the elastic potential energy of the block-spring system (in J)? __________ J B) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. _______ M/S
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT