Question

a 0.2 kg mass is pushed down against a vertical spring with a spring constant k...

a 0.2 kg mass is pushed down against a vertical spring with a spring constant k = 1000 N/m. when the spring is compressed by 10 cm, the object is let go. what vertical height above the release point will the obhect reach? give answer in meters

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the...
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the spring is compressed by 10 cm the object is let go. what is the speed of the object the second its let go from the spring. (i.e. the spring is at its equilibrium length) answer in m/s
A 3.00 kg mass is pushed against a spring and released. If the spring constant of...
A 3.00 kg mass is pushed against a spring and released. If the spring constant of the spring is 7500 N/m and the spring is compressed 10.0 cm. (a) What is the energy stored in the compressed spring? (b) What is the maximum speed ?0 of the mass? (c) The mass then travels across a rough surface and then up a smooth ramp. The speed at the beginning of the ramp is ?1 = 4.00 m/s. What is the work...
A cart of unknown mass is pushed 3.61 cm against a hoop spring (spring constant 59.00...
A cart of unknown mass is pushed 3.61 cm against a hoop spring (spring constant 59.00 N/m) and released, just as in the lab experiment. It is observed to roll down the track (after losing contact with the spring) at constant speed v. A second spring has spring constant 80.00 N/m. If the experiment is repeated, by what distance should this second spring be compressed in order for the cart to acquire the same final speed v? Answer in cm
You hang a 10 kg mass off of a vertical spring with a spring constant k...
You hang a 10 kg mass off of a vertical spring with a spring constant k = 15 N/m. How much does the spring stretch? Then, you take the spring and lay it flat on a friction-less table, anchoring one end. You attach the same mass to free end, pull it back 0.25 meters from its equilibrium position, and let go. How fast is the mass going at the equilibrium position?
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with...
A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with a spring constant of 1190 N/m . If the spring was compressed 0.170 m before pushing the ball straight up, what is the maximum height that the ball will reach above the initial position?
A 2.70 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on...
A 2.70 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 10.0 J of potential energy in it, the mass is suddenly released from rest. What is the greatest acceleration of the mass? Express your answer with the appropriate units.
A 5.00 grams object is pressed {y} cm against a vertical spring whose elastic constant is...
A 5.00 grams object is pressed {y} cm against a vertical spring whose elastic constant is 3000 N/m. How high will the object go up in meters?
3. An 8 kg stone rests on a vertical spring of force constant 785 N /...
3. An 8 kg stone rests on a vertical spring of force constant 785 N / m. The stone is pushed down about 30 cm and released. (a) Obtain the elastic potential energy of the compressed spring just before releasing it (b) Obtain the maximum height reached by the stone (c) Obtain the velocity just after it leaves the spring.
A block of mass 20 kg on a horizontal surface where uk = 0.4is pushed against...
A block of mass 20 kg on a horizontal surface where uk = 0.4is pushed against an initially relaxed spring that has a force constant k = 100 N/m, compressing it 1.50 meters. It is then released, what is the maximum velocity of the mass? Hint the maximum velocity occurs before the relaxed spring equilibrium point.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT