Question

A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A...

A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A ball of mass 320 grams is placed at rest on top of the compressed spring. Take that the height of the ball at this position is zero. The spring is then released so the ball is shot straight up.

a)Find the total initial energy of the system consisting of the ball and the spring.

b)Find the total potential (i.e before the ball is shot) energy of the system at the instant the ball leaves the spring (compared to the zero level)

c) Find the kinetic energy of the ball at the instant it leaves the spring.

d) Find the speed of the ball at the instant it leaves the spring.

e) How high does the ball rise in its vertical trajectory above the non-compressed position of the spring?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a spring gun system, a spring with a spring force constant 430 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 430 N/mN/m  , is compressed 0.11 mm . When fired, 80.7 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.50×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
In a spring gun system, a spring with a spring force constant 370 N/m  , is compressed...
In a spring gun system, a spring with a spring force constant 370 N/m  , is compressed 0.13 m . When fired, 79.1% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 5.50×10−2 kg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 90.3 % of the kinetic energy at the bottom converted into an increase in gravitational...
In a spring gun system, a spring with a spring force constant 350 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 350 N/mN/m  , is compressed 0.11 mm . When fired, 81.0 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.40×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 90.0 %% of the kinetic energy at the bottom converted into an increase in...
A spring tied to a vertical surface with constant K = 240N / m is compressed...
A spring tied to a vertical surface with constant K = 240N / m is compressed a distance of 0.123m (with respect to its natural length). A 5g mass is placed on the other side of the spring and the spring is released. a) indicate which statement is true or false. 1. The initial kinetic energy is different from zero. 2. The initial non-zero elastic potential energy. 3. The final kinetic energy is different from zero. 4. The final elastic...
A ball with mass m = 50.0 g, is sitting on a vertical spring whose force...
A ball with mass m = 50.0 g, is sitting on a vertical spring whose force constant is 120.0 N/m. The initial position of the spring is at y = 0.00 m. The spring is compressed downward a distance x = 0.200 m. From the compressed position, how high will the ball bearing rise? How high is does the ball bearing rise above the position at y = 0.00 m? What is the kinetic energy of the ball at the...
90. The spring of a spring gun has a constant of 500N/m. It is compressed a...
90. The spring of a spring gun has a constant of 500N/m. It is compressed a distance x = 0.05m and a ball of mass 0.10kg is placed in the barrel against the compressed spring. Compute the maximum speed with which the ball leaves the gun when released.( consider Conservation of Energy)
A spring with a spring constant of 5000 N/m is compressed 25 cm by a mass...
A spring with a spring constant of 5000 N/m is compressed 25 cm by a mass of 2 kg. The mass is released and the spring propels the mass across the floor. After the mass leaves the spring it experiences drag on the floor. The kinetic coefficient of friction between the mass and the floor 0.25.   What is the maximum speed of the cart? How far does the cart slide before it come to a stop?
A mass of 3.8 is placed on a stiff vertical spring, which has a spring constant...
A mass of 3.8 is placed on a stiff vertical spring, which has a spring constant of 950n/m The object is then pressed against the spring until it has been compressed a distance of 88.7cm. The mass is then released and is allowed to be thrown up into the air. a What will be the elastic potential energy stored on the spring just before the mass is released? b What will be the gravitational potential energy be of this mass...
A ball is attached to a vertical spring. The ball is initially supported at a height...
A ball is attached to a vertical spring. The ball is initially supported at a height y so that the spring is neither stretched nor compressed. The ball is then released from rest and it falls to a height y - h before moving upward. Consider the following quantities: translational kinetic energy, gravitational potential energy, elastic potential energy. When the ball was at a height y - (h/2), which of the listed quantities has values other than zero joules? Please...
3. An 8 kg stone rests on a vertical spring of force constant 785 N /...
3. An 8 kg stone rests on a vertical spring of force constant 785 N / m. The stone is pushed down about 30 cm and released. (a) Obtain the elastic potential energy of the compressed spring just before releasing it (b) Obtain the maximum height reached by the stone (c) Obtain the velocity just after it leaves the spring.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT