Question

. A 50 g plastic cube is pressed against a spring, compressing the spring by 10...

. A 50 g plastic cube is pressed against a spring, compressing the spring by 10 cm. The spring constant is 25 N/m. The cube is 22 cm from the bottom of a 30° slope. Once the cube is released, to what height does the cube slide? The coefficient of kinetic friction on the flat surface is .20. There is no friction up the ramp.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A) A 65 g ice cube can slide without friction up and down a 30∘...
Part A) A 65 g ice cube can slide without friction up and down a 30∘ slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 10 cm. The spring constant is 22 N/m . When the ice cube is released, what total distance will it travel up the slope before reversing direction? Express your answer to two significant figures and include the appropriate units . Part B) The ice cube is...
A 51 gg ice cube can slide without friction up and down a 30∘30∘ slope. The...
A 51 gg ice cube can slide without friction up and down a 30∘30∘ slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 10 cm. The spring constant is 24 N/mN/m. When the ice cube is released, A) what total distance will it travel up the slope before reversing direction?--------cm? B) The ice cube is replaced by a 51 gg plastic cube whose coefficient of kinetic friction is 0.20. How far...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the block compresses the spring 14.8 cm. The spring rests at the bottom of a ramp inclined at 64.3o to the horizontal. A) Determine how far up the incline the block moves before it stops if there is no friction between the block and the ramp. B) How far up the incline does the block move before it stops if the coefficient of kinetic friction...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.366...
A 225-g block is pressed against a spring of force constant 1.26 kN/m until the block...
A 225-g block is pressed against a spring of force constant 1.26 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.369...
A 231-g block is pressed against a spring of force constant 1.12 kN/m until the block...
A 231-g block is pressed against a spring of force constant 1.12 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block. Ans:2.86 I dont understand partB (b) if the coefficient of...
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm....
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 62 cm from where you released it. The spring constant is 170 N/m. What is the coefficient of kinetic friction between the block and the table?
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm....
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 84 cm from where you released it. The spring constant is 280 N/m. What is the coefficient of kinetic friction between the block and the table?
A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20...
A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20 cm. Then the man releases the block, and the spring sends it sliding across a tabletop. It stops 90 cm from where you released it. The spring constant is 325 N/m. What is the block–table coefficient of kinetic friction? A. 0.47       B. 0.97 C. 0.57 D. 0.37
An ice cube of mass 50.0 gg can slide without friction up and down a 25.0...
An ice cube of mass 50.0 gg can slide without friction up and down a 25.0 degreedegree slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 0.100 mm . The spring constant is 25.0 N/mN/m . When the ice cube is released, how far will it travel up the slope before reversing direction? Part D- Identify the initial and final gravitational potential energies. Enter your answers, separated by a comma, in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT