Question

2.85 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...

2.85 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T = 310. K and P = 1.00 bar.

Part A:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate q for this process. Express your answer with the appropriate units.

Part B:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate w for this process. Express your answer with the appropriate units

Part C:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate ΔU for this process. Express your answer with the appropriate units.

Part D:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate ΔH for this process. Express your answer with the appropriate units.

Part E:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate ΔS for this process. Express your answer with the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.15 mol of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.15 mol of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T=350.K and P=5.00bar. 1) The gas undergoes a reversible adiabatic expansion until the final pressure is one-fourth its initial value. 2) The gas undergoes an adiabatic expansion against a constant external pressure of 1.25 bar until the final pressure is one-fourth its initial value. 3)The gas undergoes an expansion against a constant external pressure of zero bar until...
3.75 moles of ideal fas with CV,m=3/2R undergoes the transformations described in the following list from...
3.75 moles of ideal fas with CV,m=3/2R undergoes the transformations described in the following list from an initial state described by T=298K and P=4.50 bar. c)The gas undergoes an expansion against a constant external pressure of zero bar until the final pressure is one third its initial value. Find S
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an initial...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an initial state T = 680 K and P = 1.15 bar to a final state T= 298 and P= 4.75 bar. a) Calculate ΔU, ΔH, and ΔS for this process. b) Calculate ΔU, ΔH, and ΔS for this process was reversible.
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the following two step process: first an isothermal expansion against a constant pressure of 0.1 bar until the volume is doubled; followed by a cooling to -35.6 oC at constant volume. Calculate the following thermodynamic quantities for the total process: 1) Work (w) for step 1. 2) Heat (Q) for step 1. 3) Change in internal energy (U) for step 1. 4) Change in enthalpy...
Consider 1.00 mol of an ideal gas (CV = 3/2 R) occupying 22.4 L that undergoes...
Consider 1.00 mol of an ideal gas (CV = 3/2 R) occupying 22.4 L that undergoes an isochoric (constant volume) temperature increase from 298 K to 342 K. Calculate ∆p, q , w, ∆U, and ∆H for the change. For Units, pressure in atm and the rest in J.
a. One mole of an ideal monoatomic gas (closed system, Cv,m) initially at 1 atm and...
a. One mole of an ideal monoatomic gas (closed system, Cv,m) initially at 1 atm and 273.15 K experiences a reversible process in which the volume is doubled. the nature of the process is unspecified, but the following quantities are known, deltaH=2000.0J and q=1600.0J. Calculate the initial volume, the final temperature, the final pressure, deltaU, and w for the process. b. Suppose the above gas was taken from the same initial state to the same final state as in the...
Part A A sample of ideal gas at room temperature occupies a volume of 27.0 L...
Part A A sample of ideal gas at room temperature occupies a volume of 27.0 L at a pressure of 202 torr . If the pressure changes to 1010 torr , with no change in the temperature or moles of gas, what is the new volume, V2? Express your answer with the appropriate units. Part B If the volume of the original sample in Part A (P1 = 202 torr , V1 = 27.0 L ) changes to 60.0 L...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant Requals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. Part A When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g)...
A sample containing 2.50 moles of He (1 bar, 345 K ) is mixed with 1.75...
A sample containing 2.50 moles of He (1 bar, 345 K ) is mixed with 1.75 mol of Ne (1 bar, 345 K ) and 1.50 mol of Ar (1 bar, 345 K ). Calculate ΔGmixing. Calculate ΔSmixing. Express your answer with the appropriate units. Calculate ΔA for the isothermal compression of 3.11 mol of an ideal gas at 321 K from an initial volume of 60.0 L to a final volume of 20.5 L.​ Does it matter whether the...
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8...
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8 liter (8*10-4 m 3 ) and a temperature of 300 K. a) The gas is thermally isolated and allowed to expand adiabatically to a final volume of 1 liter (10-3 m^3 ). How does the entropy of the gas change? Please provide your reasoning. b) Find the final temperature, ?? , of the gas after its adiabatic expansion. c) With the gas at the...