Question

Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8...

Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8 liter (8*10-4 m 3 ) and a temperature of 300 K.

a) The gas is thermally isolated and allowed to expand adiabatically to a final volume of 1 liter (10-3 m^3 ). How does the entropy of the gas change? Please provide your reasoning.

b) Find the final temperature, ?? , of the gas after its adiabatic expansion.

c) With the gas at the temperature ?? that you calculated in part (b), it is now brought into contact with a large thermal reservoir at 300 K and equilibrates to this temperature at constant volume. How much does the internal energy of the gas change during this process?

d) Find the change in the total entropy due to the process described in part (c). Note that the total entropy includes the entropy of the gas and of the environment (i.e. the thermal reservoir).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8...
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8 Liter and a temperature of 300K. a) The gas is thermally isolated and allowed to expand adiabatically to a final volume of 1 Liter. Find the final temperature of the gas after its adiabatic expansion. b) With the gas at the temperature Tf that you calculated in (a), it is now brought into contact with a large thermal reservoir at 300K and equilibriates to...
3. 10.0 moles of ideal gas cloud has an initial pressure of 1.00 bar, initial volume...
3. 10.0 moles of ideal gas cloud has an initial pressure of 1.00 bar, initial volume of 100.0L and temperature of 25.0ºC. The cloud expands adiabatically to a final volume of 1000.0L. Cp,m= 20.79 J / mol K (Cp,m is molar heat capacity and constant pressure) a. (10 pts) What is the final pressure of the gas cloud? b. (10 pts) What is the final temperature of the gas cloud? c. (10 pts) What is the change in entropy for...
An ideal gas is compressed from a volume of Vi 5 5.00 L to a volume...
An ideal gas is compressed from a volume of Vi 5 5.00 L to a volume of Vf 5 3.00 L while in thermal contact with a heat reservoir at T 5 295 K as in Figure P12.21. During the compression process, the piston moves down a distance of d 5 0.130 m under the action of an average external force of F 5 25.0 kN. Find (a) the work done on the gas, (b) the change in internal energy...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
One mole of the gas Ar expands through a reversible adiabatic process, from a volume of...
One mole of the gas Ar expands through a reversible adiabatic process, from a volume of 1 L and a temperature of 300 K, to a volume of 5 L. A) what is the final temperature of the gas? B) How much work has the expansion carried out? C) What is the change in heat? Assume this is a mono-atomic ideal gas. Note by asker: as the gas is mono-atomic, cp=(5/2)*R, cv=(3/2)*R
Problem: A sample of monatomic ideal gas containing 6.02´1023 atoms occupies a volume of 2.24´10-2 m3...
Problem: A sample of monatomic ideal gas containing 6.02´1023 atoms occupies a volume of 2.24´10-2 m3 at a pressure of 1.01´105 Pa. With the volume held constant, the gas is cooled until the atoms are moving at a root-mean-square speed of 402 m/s. The mass of each atom is 6.646´10-27 kg. What is the initial temperature of the gas? What is the final temperature of the gas? What is the change in entropy of the gas?
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
Calculate the change in entropy for one mole of ideal gas which expands from an initial...
Calculate the change in entropy for one mole of ideal gas which expands from an initial volume of 2 L and initial temperature of 500 K to a final volume of 6 L under the following conditions. P(initial) refers to the pressure when T(initial)= 500K, V(initial)= 2 L. a) Irreversible expansion against a constant pressure of Pinitial/2 b) Irreversible expansion against a vacuum...a 'free expansion'. c) Adiabatic irreversible expansion against a constant pressure of Pfinal d) Adiabatic reversible expansion
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT