Question

3.75 moles of ideal fas with CV,m=3/2R undergoes the transformations described in the following list from...

3.75 moles of ideal fas with CV,m=3/2R undergoes the transformations described in the following list from an initial state described by T=298K and P=4.50 bar.

c)The gas undergoes an expansion against a constant external pressure of zero bar until the final pressure is one third its initial value. Find S

Homework Answers

Answer #1

We know, Cp,m - Cv,m = R

=> Cp,m= R + Cv,m

=> Cp,m = R + 3/2 R

=> Cp,m = 5/2 R

Given , Pf = 1 bar , Pi = 3 bar , Tf = 298 K , Ti = 298 K, n = 3.75 moles

Now,

S = - nR ln Pf /Pi + n Cp,mln Tf / Ti

=> S = -3.75 mol * 8.314 J mol-1K-1 * ln(1/3) + 3.75 mol * (5/2) * 8.314 Jmol-1K-1 * ln 1

=> S = -31.1775 * ln( 0.33) JK-1 + 0

=> S = -31.1775 * - 1.1086 JK-1

=> S = 34.6 JK-1

or we can solve by another way as, Pexternal = 0 , T =0

so, S = - nR ln Pf / Pi = - 3.75 mol * 8.314 Jmol-1 K-1 * ln (1 /3) = 34.6 JK-1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.15 mol of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.15 mol of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T=350.K and P=5.00bar. 1) The gas undergoes a reversible adiabatic expansion until the final pressure is one-fourth its initial value. 2) The gas undergoes an adiabatic expansion against a constant external pressure of 1.25 bar until the final pressure is one-fourth its initial value. 3)The gas undergoes an expansion against a constant external pressure of zero bar until...
2.85 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.85 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T = 310. K and P = 1.00 bar. Part A:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate q for this process. Express your answer with the appropriate units. Part B:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate w for...
5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm...
5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm undergoes a two-stage transformation. For each of the stages described in the following list, Calculate the final pressure as well as q, w, ∆U, ∆H and ∆S. a) The gas is expanded isothermally and reversibly until the volume triple. b) then, the temperature is raised to T=2000 oC at the constant volume. Note: R= 8.314 j/mol.K or 0.082 lt.atm/mol.K, 1lt.atm= 101.325 joule
3 moles of a monoatomic ideal gas with Cv=(32)RT occupies a volume of 3.2L at a...
3 moles of a monoatomic ideal gas with Cv=(32)RT occupies a volume of 3.2L at a pressure of 1.9atm at point A. The gas is carried through a cycle consisting of three processes: 1. The gas is heated at constant pressure until its volume is 4.4L at point B. 2. The gas is cooled at constant volume until the pressure decreases to 1.2atm (C). 3. The gas undergoes an isothermal compression back to point A. Find W for the isochoric...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an initial...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an initial state T = 680 K and P = 1.15 bar to a final state T= 298 and P= 4.75 bar. a) Calculate ΔU, ΔH, and ΔS for this process. b) Calculate ΔU, ΔH, and ΔS for this process was reversible.
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an intital...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an intital state T=680 K and P= 1.15 bar to a final state T = 298 K and P = 4.75 bar a) Calculate change in internal energy, change in enthalpy, and change in entropy for this process b) Calculate change in internal energy, change in enthalpy, and change in entropy if this process was reversible.
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R is initially in state "A" at pressure 73390 Pa and volume 1.0 m3. The gas then expands isobarically to state "B" which has volume 2.6?3m3. The gas then cools isochorically to state "C". The gas finally returns from state "C" to "A" via an isothermal process. What is the adiabatic constant γ for this gas? What is Q during the expansion from "A" to...
a) Calculate delta S(system) for the reversible heating of 1 mol of ethane from 298K to...
a) Calculate delta S(system) for the reversible heating of 1 mol of ethane from 298K to 1500 K at constant pressure. Use Cp = 5.351 + 177.669x10-3 T – 687.01x10-7 T ^2 + 8.514x10-9 T ^3 (J/mol K). Consider the reversible Carnot cycle discussed in class with 1 mol of an ideal gas with Cv=3/2R as the working substance. The initial isothermal expansion occurs at the hot reservoir temperature of Thot=600C from an initial volume of 3.50 L to a...
A sample consisting of 2.5 moles of ideal gas (Cp,m =20.8 J/K) is initially at 3.25...
A sample consisting of 2.5 moles of ideal gas (Cp,m =20.8 J/K) is initially at 3.25 atm and 300 K. It undergoes reversible adiabatic expansion until its pressure reaches 2.5 atm. Calculate the final volume, the final temperature, and the work done.
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....