Question

A 17 kg object explodes. 9-kg part acquires a speed of 0.59 m/s going Northwest. What...

A 17 kg object explodes. 9-kg part acquires a speed of 0.59 m/s going Northwest. What speed the other part acquires? What is the direction of motion for the 8 kg part

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.10 kg object with a speed of 2.0 m/s in the +x direction makes a...
A 0.10 kg object with a speed of 2.0 m/s in the +x direction makes a head-on elastic collision with a 0.15 kg object moving in the -x direction with a speed of 3.0 m/s. What is the final velocity of the 0.10 kg object after the collision? a. – 4.0 m/s b. + 1.0 m/s c. - 1.0 m/s d. + 4.0 m/s
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object...
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 1 m/s. Find the final velocity of the smaller object after the collision. (East is defined as positive. Indicate the direction with the sign of your answer.) m/s
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the...
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the opposite direction at 4.8 m/s. If the collision is perfectly elastic, what is the final speed of the 2.3-kg object?
a 3.0 kg object at rest explodes into 3 distinct fragments each moving in different directions....
a 3.0 kg object at rest explodes into 3 distinct fragments each moving in different directions. The first is 0.50kg and flies west at 2.8m/s, the second is 1.3 kg moving south at 1.5m/s. What is the mass, speed, and direction of the third fragment? How much kinetic energy was released in this explosion?
1460 kg weather rocket accelerates upward at 12 m/s2. It explodes 2.0 s after liftoff and...
1460 kg weather rocket accelerates upward at 12 m/s2. It explodes 2.0 s after liftoff and breaks into two fragments, one twice as massive as the other. Photos reveal that the lighter fragment traveled straight up and reached a maximum height of 530 m. What were the speed and direction of the heavier fragment just after the explosion?
a 30 kg object is moving through space in the +x direction with a speed of...
a 30 kg object is moving through space in the +x direction with a speed of 20 m/s when, due to an internal explosion, it breaks into three parts. A 15kg parrt moves away from the explosion with a speed of 10 m/s in the +y direction, a 6kg part moves in the -x direction with a speed of 5m/s. what is the magnitude of the velocity of the remaining part?
An object with total mass mtotal = 16.4 kg is sitting at rest when it explodes...
An object with total mass mtotal = 16.4 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.7 kg moves up and to the left at an angle of θ1 = 18° above the –x axis with a speed of v1 = 26 m/s. A second piece with mass m2 = 5.2 kg moves down and to the right an angle of θ2 = 23° to the right of the -y axis...
2.  A 0.768 kg object is moving with a velocity of 2.53 m/s.  A 0.532 kg moving object...
2.  A 0.768 kg object is moving with a velocity of 2.53 m/s.  A 0.532 kg moving object      hits it.  After collision, the 0.768 kg object has a velocity of 3.22 m/s and the 0.532 kg      object has a velocity of 0.636 m/s.  What was the velocity of the 0.532 kg object      before collision?  (All motion is 1-D; friction can be ignored.)
A dog (17 kg) is running with a speed of 2.9 m/s. What is the force...
A dog (17 kg) is running with a speed of 2.9 m/s. What is the force required to stop the dog? Assume that the force is horizontal, constant, and is applied over a distance of 0.45 m.
A 9.00 kg object is moving to the left with a speed 9.00 m/s. Another 9.00...
A 9.00 kg object is moving to the left with a speed 9.00 m/s. Another 9.00 object is moving to the right with a speed of 9.00 m/s. The two objects collide and stick together. The magnitude of the loss in the kinetic energy because of the collision, in Joules, is: