Question

2.  A 0.768 kg object is moving with a velocity of 2.53 m/s.  A 0.532 kg moving object...

2.  A 0.768 kg object is moving with a velocity of 2.53 m/s.  A 0.532 kg moving object

     hits it.  After collision, the 0.768 kg object has a velocity of 3.22 m/s and the 0.532 kg

     object has a velocity of 0.636 m/s.  What was the velocity of the 0.532 kg object

     before collision?  (All motion is 1-D; friction can be ignored.)

Homework Answers

Answer #1

here,

the mass of object 1 ,m1 = 0.768 kg

the mass of object 2 ,m2 = 0.532 kg

the initial velocity of object 1 , u1 = 2.53 m/s

the final velocity of object 1 , v1 = 3.22 m/s

the final velocity of object 2 , v2 = 0.636 m/s

let the initial velocity of object 2 be u2

using conservation of momentum

m1 * u1 + m2 * u2 = m1 * v1 + m2 * v2

0.768 * 2.53 + 0.532 * u2 = 0.768 * 3.22 + 0.532 * 0.636

solving for u2

u2 = 1.63 m/s

the initial velocity of object 2 is 1.63 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The momentum of object 1 is (6.70,5.9) kg m/s. The momentum of object 2 is (9.91,1.43)...
The momentum of object 1 is (6.70,5.9) kg m/s. The momentum of object 2 is (9.91,1.43) kg m/s.   Object 1 collides with object 2 and they stick together. What is the y-component of the final momentum after the collision if friction is ignored? Assume units of kg m/s and all variables are known to 3 significant figures
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object...
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 1 m/s. Find the final velocity of the smaller object after the collision. (East is defined as positive. Indicate the direction with the sign of your answer.) m/s
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object? b)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on inelastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object?
A 0.011 kg marble is moving with a velocity of 0.45 m/s to the left when...
A 0.011 kg marble is moving with a velocity of 0.45 m/s to the left when it collides with a 0.018 kg marble at rest. The first marble glances off and moves in a direction 15 degrees up from its direction of motion, with a new velocity of 0.18 m/s. Draw a diagram showing the motion of the two marbles before and after the collision. For the marble that was initially at rest, determine the momentum after the collision. Determine...
A 3.20-kg object is moving east at 4.50 m/s when it collides with a 6.00-kg object...
A 3.20-kg object is moving east at 4.50 m/s when it collides with a 6.00-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 3.13 m/s. 1) What is the final velocity of the smaller object after the collision? Assume that the positive direction is to the east.(Express your answer to three significant figures.)
An object of mass m1=6.1 kg moving at 5.1 m/s strikes a stationary second object of...
An object of mass m1=6.1 kg moving at 5.1 m/s strikes a stationary second object of unknown mass. After an elastic collision, the first object is observed moving at 3.06 m/s at an angle of -43° with respect to the original line of motion. What is the energy of the second object?
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before...
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. This collision is Elastic Partially inelastic Totally inelastic Impossible A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass...
2 objects, moving in one dimension, undergo an isolated collision. Object 1 has initial velocity 1...
2 objects, moving in one dimension, undergo an isolated collision. Object 1 has initial velocity 1 m/s. Object 2 has an initial velocity -3 m/s. After the collision, the relative velocity of the 2 objects is vAB=+2 m/s. The reduced mass of the two objects is ⅔ kg. What is the change in total kinetic energy of the entire system during this collision?  Express your answer in units of Joules.
A 1-kg ball moving at 5 m/s strikes a 2-kg ball moving at 4 m/s in...
A 1-kg ball moving at 5 m/s strikes a 2-kg ball moving at 4 m/s in the opposite direction. After the collision the 2-kg ball continues moving in the same direction at 1.1 m/s. (a) Find the velocity of the 1-kg ball after the collision. (b) Find the change in the kinetic energy. pls show work
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose...
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose velocity is -2.5 m/s i and whose mass is 0.12 kg. The motion takes place in one dimension. (a) What are the final velocities of the objects if the collision is elastic? b.) What is the total initial kinetic energy in the collision?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT