Question

A 0.10 kg object with a speed of 2.0 m/s in the +x direction makes a...

A 0.10 kg object with a speed of 2.0 m/s in the +x direction makes a head-on elastic collision with a 0.15 kg object moving in the -x direction with a speed of 3.0 m/s. What is the final velocity of the 0.10 kg object after the collision?

a. – 4.0 m/s

b. + 1.0 m/s

c. - 1.0 m/s

d. + 4.0 m/s

Homework Answers

Answer #1

In a perfectly elastic collision, Using momentum conservation

Pi = Pf

m1V1i + m2V2i = m1V1f + m2*V2f

given that m1 = mass of object 1 = 0.10 kg

m2 = mass of object 2 = 0.15 kg

V1i = initial speed of object 1 = +2.0 m/s

V2i = initial speed of object 2 = -3.0 m/s

0.10*2.0 + 0.15*(-3.0) = 0.10*V1f + 0.15*V2f

-0.25 = 0.10*V1f + 0.15*V2f

2*V1f + 3*V2f = -5

Now In elastic collisions, since coefficient of restitution is 1, So

V1f - V2f = V2i - V1i

V1f - V2f = -3.0 - 2.0

V1f - V2f = -5.0

3*V1f - 3*V2f = -15.0

Now Solving both equation

Add both of them

5*V1f = -20.0

V1f = velocity of object 1 after collision = -4 m/s (in left direction)

V2f = velocity of object 2 after collision = +1.0 m/s (in right direction)

Speed of 0.10 mass just after collision = -4.0 m/sec

Therefore correct option is a.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic...
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic collision with a stationary 3-kg particle. After collision, the two particles rebound along the x-axis. What is the final velocity of the 1-kg particle?
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block that has a speed of 3.4 m/s in the same direction. After the collision, the 4.0 kg block is observed to be traveling in the original direction with a speed of 4.3 m/s. (a) What is the velocity of the 2.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s collides head-on with a 0.260 kg ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A ball of mass 0.458 kg moving east (+x direction) with a speed of 3.76 m/s...
A ball of mass 0.458 kg moving east (+x direction) with a speed of 3.76 m/s collides head-on with a 0.229 kg ball at rest. Assume that the collision is perfectly elastic. 1.What is be the speed of the 0.458-kg ball after the collision? Express your answer to three significant figures and include the appropriate units. 2.What is be the direction of the velocity of the 0.458-kg ball after the collision?. 3.What is the speed of the 0.229-kg ball after...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A particle of 1kg moving with 11m/s in the positive x-axis direction makes a head-on elastic...
A particle of 1kg moving with 11m/s in the positive x-axis direction makes a head-on elastic collision with a stationary particle of mass 3kg. After collision, the two particles rebound along the x-axis. What is the final velocity of the lighter object?
A 0.250-kg ice puck, moving east with a speed of 5.58 m/s, has a head-on collision...
A 0.250-kg ice puck, moving east with a speed of 5.58 m/s, has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. a. What is the speed of the 0.250-kg puck after the collision? b. What is the direction of the velocity of the 0.250-kg puck after the collision? c. What is the direction of the velocity of the 0.250-kg puck after the collision? d. What is the direction of the velocity...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT