Question

Applying the magnetic field to a system of electrons with a spin of 1/2, one can...

Applying the magnetic field to a system of electrons with a spin of 1/2, one can study paramagnetism. Describe the partition function, Helmholtz free energy, magnetic moment, and susceptibility using canonical ensemble.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system of three non-interacting spins in equilibrium with a magnetic field H (this system...
Consider a system of three non-interacting spins in equilibrium with a magnetic field H (this system is not really macroscopic, but is illustrative). Each spin can have only two possible orientations: parallel to H, with magnetic moment u and energy (-u H), or antiparallel with magnetic moment -u and energy (uH). a) List and identify all possible states of the system. b) If it is known that the system has an energy (-uH): i. What are the accessible states? ii....
In electron spin resonance (ESR) and nuclear magnetic resonance (NMR), the energy levels of electrons or...
In electron spin resonance (ESR) and nuclear magnetic resonance (NMR), the energy levels of electrons or protons, respectively, are split with a magnetic field (otherwise known as the Zeeman effect). Electrons or protons with spin in the same direction as the magnetic field have lower energies than electrons or protons with spins aligned opposite to the field. The energy difference between these levels depends on the strength of the field, so ESR and NMR can be used to measure, very...
Consider a spin-1/2 particle with a magnetic moment. At time t = 0, the state of...
Consider a spin-1/2 particle with a magnetic moment. At time t = 0, the state of the particle is 0c1t = 029 = 0 +9. The system is allowed to evolve in a uniform magnetic field B = B0(x^ +z^)/sqrt2 NOTE;the megnetic field is in general direction i just want to ask how to calculate the value of angles which are theta and fi from the given megnetic field
An electron spin can adopt either of two orientations in a magnetic field, and its energies...
An electron spin can adopt either of two orientations in a magnetic field, and its energies are ±μB, where μ = 9.274 x 10-24 J/T is the Bohr magneton and B is the intensity of the magnetic field (often reported in teslas, T). Calculate the relative populations of upper to lower energy spin states at 4 K, the temperature of liquid helium. Take B = 1 T. Find the numerical value.
1. Electric fields are E(x, y, z ;t) = Re [Es(x, y, z)ejwt] The magnetic field...
1. Electric fields are E(x, y, z ;t) = Re [Es(x, y, z)ejwt] The magnetic field is H(x, y, z ;t) = Re [Hs(x, y, z)ejwt]. Here, let's say Es and Hs are the pagers of electric and magnetic fields. (a) describe the Maxwell calculation using a pager. (b) the medium is homogenous and the source free zone is pager-based. Describe Maxwell calculation. (c) Using (b), electric field Es and magnetic field HS Helmholtz calculation Show satisfaction with ( k2...
An electron (a spin-1/2 particle) sits in a uniform magnetic field pointed in the x-direction: B...
An electron (a spin-1/2 particle) sits in a uniform magnetic field pointed in the x-direction: B = B0xˆ. a) What is the quantum Hamiltonian for this electron? Express your answer in terms of B0, other constants, and the spin operators Sx, Sy and Sz, and then also write it as a matrix (in z basis). b) What are the energy eigenvalues, and what are the associated normalized eigenvectors (in terms of our usual basis)? You may express the eigenvectors either...
2) The spin only magnetic susceptibility of an octahedral V (Z = 23) is 3.87 BM....
2) The spin only magnetic susceptibility of an octahedral V (Z = 23) is 3.87 BM. (a) What is the oxidation state of V in this complex? ( b) if the gap between HOMO and LUMO is 18000cm-1 , calculate LFSE (or CFSE). 3) An electron is removed from the above-mentioned system. (a) Will DO become larger or smaller? (b) If the DO value changes by 30%, calculate the estimate value for the LFSE. (ignore Jahn-Teller effect) (c) If you...
In magnetic resonance imaging (MRI), a patient lies in a strong 1- to 2-TT magnetic field...
In magnetic resonance imaging (MRI), a patient lies in a strong 1- to 2-TT magnetic field B⃗ B→ oriented parallel to the body. This field is produced by a large superconducting solenoid. The MRI measurements depend on the magnetic dipole moment μ⃗ μ→ of a proton, the nucleus of a hydrogen atom. The proton magnetic dipoles can have only two orientations: either with the field or against the field. The energy needed to reverse this orientation ("flip" the protons) from...
17.1) Helmholtz coils The magnetic field on the axis of a circular loop of wire is...
17.1) Helmholtz coils The magnetic field on the axis of a circular loop of wire is not very uniform (in fact, we showed that the field strength decreases as 1/r3 ). But, with two such coils, one can produce a relatively uniform field in a small neighborhood. Consider two parallel circular coils of radius a, centered on the y-axis. One coil is in the y = 0 plane, and the other is in the y = d plane. Assume that...
1. The magnetic field, pointing in the opposite direction as the area vector of a 0.02m^2...
1. The magnetic field, pointing in the opposite direction as the area vector of a 0.02m^2 loop, has an instantaneous value of 7T. What is the magnetic flux through the loop in SI units? Hint: Be careful with signs. 2. The magnetic field, pointing perpendicular to the area vector of a 0.02m^2 loop, has an instantaneous value of 7T. What is the magnetic flux through the loop in SI units? 3. The magnetic field, pointing in the same direction as...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT